Multiply 2/3 by 84 which is 56.
First, let's calculate the mean and the mean absolute deviation of the first bowler.
FIRST BOWLER: <span>8,5,5,6,8,7,4,7,6
Mean = (Sum of all data)/(Number of data points) = (8+5+5+6+8+7+4+7+6)/9
<em>Mean = 6.222</em>
Mean absolute deviation or MAD = [</span>∑(|Data Point - Mean|]/Number of Data Points
MAD = [|8 - 6.222| + |5 - 6.222| + |5 - 6.222| + |6 - 6.222| + |8 - 6.222| + |7 - 6.222| + |4 - 6.222| + |7 - 6.222| + |6 - 6.222|]/9
<em>MAD = 1.136</em>
SECOND BOWLER: <span>10,6,8,8,5,5,6,8,9
</span>Mean = (Sum of all data)/(Number of data points) = (<span>10+6+8+8+5+5+6+8+9</span>)/9
<em>Mean = 7.222</em>
Mean absolute deviation or MAD = [∑(|Data Point - Mean|]/Number of Data Points
MAD = [|10 - 7.222| + |6 - 7.222| + |8 - 7.222| + |8 - 7.222| + |5 - 7.222| + |5 - 7.222| + |6 - 7.222| + |8 - 7.222| + |9 - 7.222|]/9
<em>MAD = 1.531
</em>
The mean absolute deviation represents the average distance of each data to the mean. Thus, the lesser the value of the MAD is, the more consistent is the data to the mean. <em>B</em><em>etween the two, the first bowler is more consistent.</em>
Ordered pairs that work for this direct variation are (4, 3), (8, 6) and (12, 9).
In order to find these, we must first find the value of the direct variation coefficient. We can do that using the base equation y = kx and then by plugging in to find k.
y = kx
12 = k(16)
3/4 = k
Now that we have k, we can model the equation as y = 3/4x. We can also find any number of ordered pairs by using the x value and finding the y value. All of the above answers work.
Answer:
B
explanation:
I am sorry that I am not sure how to expalin but this is the correct answer.
<span>Cada goma de borrar es $ 5. Primero restar el precio de las revistas ($ 5) del dinero que gastó. Ella ahora tiene $ 20. Luego divida eso entre cuantos borradores compró (4). 20 dividido por 4 es 5. Cada borrador fue de $ 5. ¡Espero que la traducción tenga sentido !!</span>