First, we have to correct the equation in the question to b(g)⇆ 1/2 A(g)
at the first equation A(g)⇆ 2 B(g) so,
Kc = [B]^2 [ A] = 0.03
by reverse the equation 2B⇆ A
∴ Kc(original) = [A] / [B]^2
= 1/0.03 = 33 M^-1
and the new equation B⇆ (1/2) A
So, the new Kc = √Kc(original = √33
∴ KC = 5.7
Answer: 67 mmHg
Explanation:
According to Dalton's Gas Law, the total pressure of a mixture of gases is the sum of the pressure of each individual gas.
i.e Ptotal = P1 + P2 + P3 + .......
In this case,
Ptotal = 512 mmHg
P(oxygen) = 332 mmHg
P(carbon mono-oxide) = 113 mmHg
Remaining pressure (P3) = ?
To get P3, apply Dalton's Gas Law formula
Ptotal = P(oxygen) + P(carbon mono-oxide) + P3
512 mmHg = 332 mmHg + 113 mmHg + P3
512 mmHg = 445 mmHg + P3
P3 = 512 mmHg - 445 mmHg
P3 = 67 mmHg
Thus, the remaining pressure is 67 mmHg
Answer:
3.95 ounce
please mark as brainliest
Explanation:
If anything you would use a protractor but that’s not a answer.... so I would pick whatever relates to a protractor