Answer:

Explanation:
The mass of vented out in one day is:

The number of trays that should be prepared if the owner wants a service level of at least 95% is; 7 trays
<h3>How to utilize z-score statistics?</h3>
We are given;
Mean; μ = 15
Standard Deviation; σ = 5
We are told that the distribution of demand score is a bell shaped distribution that is a normal distribution.
Formula for z-score is;
z = (x' - μ)/σ
We want to find the value of x such that the probability is 0.95;
P(X > x) = P(z > (x - 15)/5) = 0.95
⇒ 1 - P(z ≤ (x - 15)/5) = 0.95
Thus;
P(z ≤ (x - 15)/5) = 1 - 0.95
P(z ≤ (x - 15)/5) = 0.05
The value of z from the z-table of 0.05 is -1.645
Thus;
(x - 15)/5 = -1.645
x ≈ 7
Complete Question is;
A bakery wants to determine how many trays of doughnuts it should prepare each day. Demand is normal with a mean of 15 trays and standard deviation of 5 trays. If the owner wants a service level of at least 95%, how many trays should he prepare (rounded to the nearest whole tray)? Assume doughnuts have no salvage value after the day is complete. 6 5 4 7 unable to determine with the above information.
Read more about Z-score at; brainly.com/question/25638875
#SPJ1
Answer:
The horizontal conductivity is 41.9 m/d.
The vertical conductivity is 37.2 m/d.
Explanation:
Given that,
Thickness of A = 8.0 m
Conductivity = 25.0 m/d
Thickness of B = 2.0 m
Conductivity = 142 m/d
Thickness of C = 34 m
Conductivity = 40 m/d
We need to calculate the horizontal conductivity
Using formula of horizontal conductivity

Put the value into the formula


We need to calculate the vertical conductivity
Using formula of vertical conductivity

Put the value into the formula


Hence, The horizontal conductivity is 41.9 m/d.
The vertical conductivity is 37.2 m/d.