Answer:
![L=107.6m](https://tex.z-dn.net/?f=L%3D107.6m)
Explanation:
Cold water in: ![m_{c}=1.2kg/s, C_{c}=4.18kJ/kg\°C, T_{c,in}=20\°C, T_{c,out}=80\°C](https://tex.z-dn.net/?f=m_%7Bc%7D%3D1.2kg%2Fs%2C%20C_%7Bc%7D%3D4.18kJ%2Fkg%5C%C2%B0C%2C%20T_%7Bc%2Cin%7D%3D20%5C%C2%B0C%2C%20T_%7Bc%2Cout%7D%3D80%5C%C2%B0C)
Hot water in: ![m_{h}=2kg/s, C_{h}=4.18kJ/kg\°C, T_{h,in}=160\°C, T_{h,out}=?\°C](https://tex.z-dn.net/?f=m_%7Bh%7D%3D2kg%2Fs%2C%20C_%7Bh%7D%3D4.18kJ%2Fkg%5C%C2%B0C%2C%20T_%7Bh%2Cin%7D%3D160%5C%C2%B0C%2C%20T_%7Bh%2Cout%7D%3D%3F%5C%C2%B0C)
![D=1.5cm=0.015m, U=649W/m^{2}K, LMTD=?\°C, A_{s}=?m^{2},L=?m](https://tex.z-dn.net/?f=D%3D1.5cm%3D0.015m%2C%20U%3D649W%2Fm%5E%7B2%7DK%2C%20LMTD%3D%3F%5C%C2%B0C%2C%20A_%7Bs%7D%3D%3Fm%5E%7B2%7D%2CL%3D%3Fm)
Step 1: Determine the rate of heat transfer in the heat exchanger
![Q=m_{c}C_{c}(T_{c,out}-T_{c,in})](https://tex.z-dn.net/?f=Q%3Dm_%7Bc%7DC_%7Bc%7D%28T_%7Bc%2Cout%7D-T_%7Bc%2Cin%7D%29)
![Q=1.2*4.18*(80-20)](https://tex.z-dn.net/?f=Q%3D1.2%2A4.18%2A%2880-20%29)
![Q=1.2*4.18*(80-20)](https://tex.z-dn.net/?f=Q%3D1.2%2A4.18%2A%2880-20%29)
![Q=300.96kW](https://tex.z-dn.net/?f=Q%3D300.96kW)
Step 2: Determine outlet temperature of hot water
![Q=m_{h}C_{h}(T_{h,in}-T_{h,out})](https://tex.z-dn.net/?f=Q%3Dm_%7Bh%7DC_%7Bh%7D%28T_%7Bh%2Cin%7D-T_%7Bh%2Cout%7D%29)
![300.96=2*4.18*(160-T_{h,out})](https://tex.z-dn.net/?f=300.96%3D2%2A4.18%2A%28160-T_%7Bh%2Cout%7D%29)
![T_{h,out}=124\°C](https://tex.z-dn.net/?f=T_%7Bh%2Cout%7D%3D124%5C%C2%B0C)
Step 3: Determine the Logarithmic Mean Temperature Difference (LMTD)
![dT_{1}=T_{h,in}-T_{c,out}](https://tex.z-dn.net/?f=dT_%7B1%7D%3DT_%7Bh%2Cin%7D-T_%7Bc%2Cout%7D)
![dT_{1}=160-80](https://tex.z-dn.net/?f=dT_%7B1%7D%3D160-80)
![dT_{1}=80\°C](https://tex.z-dn.net/?f=dT_%7B1%7D%3D80%5C%C2%B0C)
![dT_{2}=T_{h,out}-T_{c,in}](https://tex.z-dn.net/?f=dT_%7B2%7D%3DT_%7Bh%2Cout%7D-T_%7Bc%2Cin%7D)
![dT_{2}=124-20](https://tex.z-dn.net/?f=dT_%7B2%7D%3D124-20)
![dT_{2}=104\°C](https://tex.z-dn.net/?f=dT_%7B2%7D%3D104%5C%C2%B0C)
![LMTD = \frac{dT_{2}-dT_{1}}{ln(\frac{dT_{2}}{dT_{1}})}](https://tex.z-dn.net/?f=LMTD%20%3D%20%5Cfrac%7BdT_%7B2%7D-dT_%7B1%7D%7D%7Bln%28%5Cfrac%7BdT_%7B2%7D%7D%7BdT_%7B1%7D%7D%29%7D)
![LMTD = \frac{104-80}{ln(\frac{104}{80})}](https://tex.z-dn.net/?f=LMTD%20%3D%20%5Cfrac%7B104-80%7D%7Bln%28%5Cfrac%7B104%7D%7B80%7D%29%7D)
![LMTD = \frac{24}{ln(1.3)}](https://tex.z-dn.net/?f=LMTD%20%3D%20%5Cfrac%7B24%7D%7Bln%281.3%29%7D)
![LMTD = 91.48\°C](https://tex.z-dn.net/?f=LMTD%20%3D%2091.48%5C%C2%B0C)
Step 4: Determine required surface area of heat exchanger
![Q=UA_{s}LMTD](https://tex.z-dn.net/?f=Q%3DUA_%7Bs%7DLMTD)
![300.96*10^{3}=649*A_{s}*91.48](https://tex.z-dn.net/?f=300.96%2A10%5E%7B3%7D%3D649%2AA_%7Bs%7D%2A91.48)
![A_{s}=5.07m^{2}](https://tex.z-dn.net/?f=A_%7Bs%7D%3D5.07m%5E%7B2%7D)
Step 5: Determine length of heat exchanger
![A_{s}=piDL](https://tex.z-dn.net/?f=A_%7Bs%7D%3DpiDL)
![5.07=pi*0.015*L](https://tex.z-dn.net/?f=5.07%3Dpi%2A0.015%2AL)
![L=107.57m](https://tex.z-dn.net/?f=L%3D107.57m)
Answer:
The main difference between the bs2 and bs3 engine is to present in the catalytic converter. And in bs2 engines the catalytic converter is does not used for the formation of hc and co. In bs3 engine there is no harmful emissions in the hc and co
Answer:
![P_{1} = 403,708\,kPa\,(58.553\,psi)](https://tex.z-dn.net/?f=P_%7B1%7D%20%3D%20403%2C708%5C%2CkPa%5C%2C%2858.553%5C%2Cpsi%29)
Explanation:
Let assume that changes in gravitational potential energy can be neglected. The fire hose nozzle is modelled by the Bernoulli's Principle:
![\frac{P_{1}}{\rho\cdot g} = \frac{P_{2}}{\rho \cdot g} + \frac{v^{2}}{2\cdot g}](https://tex.z-dn.net/?f=%5Cfrac%7BP_%7B1%7D%7D%7B%5Crho%5Ccdot%20g%7D%20%3D%20%5Cfrac%7BP_%7B2%7D%7D%7B%5Crho%20%5Ccdot%20g%7D%20%2B%20%5Cfrac%7Bv%5E%7B2%7D%7D%7B2%5Ccdot%20g%7D)
The initial pressure is:
![P_{1} = P_{2}+ \frac{1}{2}\cdot \rho v^{2}](https://tex.z-dn.net/?f=P_%7B1%7D%20%3D%20P_%7B2%7D%2B%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Crho%20v%5E%7B2%7D)
The speed at outlet is:
![v=\frac{\dot Q}{\frac{\pi}{4}\cdot D^{2}}](https://tex.z-dn.net/?f=v%3D%5Cfrac%7B%5Cdot%20Q%7D%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%5Ccdot%20D%5E%7B2%7D%7D)
![v=\frac{(250\,\frac{gal}{min} )\cdot (\frac{3.785\times 10^{-3}\,m^{3}}{1\,gal} )\cdot(\frac{1\,min}{60\,s} )}{\frac{\pi}{4}\cdot [(1.125\,in)\cdot(\frac{0.0254\,m}{1\,in} )]^{2} }](https://tex.z-dn.net/?f=v%3D%5Cfrac%7B%28250%5C%2C%5Cfrac%7Bgal%7D%7Bmin%7D%20%29%5Ccdot%20%28%5Cfrac%7B3.785%5Ctimes%2010%5E%7B-3%7D%5C%2Cm%5E%7B3%7D%7D%7B1%5C%2Cgal%7D%20%29%5Ccdot%28%5Cfrac%7B1%5C%2Cmin%7D%7B60%5C%2Cs%7D%20%29%7D%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%5Ccdot%20%5B%281.125%5C%2Cin%29%5Ccdot%28%5Cfrac%7B0.0254%5C%2Cm%7D%7B1%5C%2Cin%7D%20%29%5D%5E%7B2%7D%20%7D)
![v\approx 24.592\,\frac{m}{s}\,(80.682\,\frac{ft}{s} )](https://tex.z-dn.net/?f=v%5Capprox%2024.592%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%5C%2C%2880.682%5C%2C%5Cfrac%7Bft%7D%7Bs%7D%20%29)
The initial pressure is:
![P_{1} = 101.325\times 10^{3}\,Pa+\frac{1}{2}\cdot (1000\,\frac{kg}{m^{3}} )\cdot (24.592\,\frac{m}{s} )^{2}](https://tex.z-dn.net/?f=P_%7B1%7D%20%3D%20101.325%5Ctimes%2010%5E%7B3%7D%5C%2CPa%2B%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%281000%5C%2C%5Cfrac%7Bkg%7D%7Bm%5E%7B3%7D%7D%20%29%5Ccdot%20%2824.592%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D)
![P_{1} = 403,708\,kPa\,(58.553\,psi)](https://tex.z-dn.net/?f=P_%7B1%7D%20%3D%20403%2C708%5C%2CkPa%5C%2C%2858.553%5C%2Cpsi%29)
complete question
A certain amplifier has an open-circuit voltage gain of unity, an input resistance of 1 \mathrm{M} \Omega1MΩ and an output resistance of 100 \Omega100Ω The signal source has an internal voltage of 5 V rms and an internal resistance of 100 \mathrm{k} \Omega.100kΩ. The load resistance is 50 \Omega.50Ω. If the signal source is connected to the amplifier input terminals and the load is connected to the output terminals, find the voltage across the load and the power delivered to the load. Next, consider connecting the load directly across the signal source without the amplifier, and again find the load voltage and power. Compare the results. What do you conclude about the usefulness of a unity-gain amplifier in delivering signal power to a load?
Answer:
3.03 V 0.184 W
2.499 mV 125*10^-9 W
Explanation:
First, apply voltage-divider principle to the input circuit: 1
*5
= 4.545 V
The voltage produced by the voltage-controlled source is:
A_voc*V_i = 4.545 V
We can find voltage across the load, again by using voltage-divider principle:
V_o = A_voc*V_i*(R_o/R_l+R_o)
= 4.545*(100/100+50)
= 3.03 V
Now we can determine delivered power:
P_L = V_o^2/R_L
= 0.184 W
Apply voltage-divider principle to the circuit:
V_o = (R_o/R_o+R_s)*V_s
= 50/50+100*10^3*5
= 2.499 mV
Now we can determine delivered power:
P_l = V_o^2/R_l
= 125*10^-9 W
Delivered power to the load is significantly higher in case when we used amplifier, so a unity gain amplifier can be useful in situation when we want to deliver more power to the load. It is the same case with the voltage, no matter that we used amplifier with voltage open-circuit gain of unity.