1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xeze [42]
3 years ago
10

The town of Mustang, TX is concerned that waste heat discharged from a new up- stream power plant will decimate the minnow popul

ation in its local stream. The power plant is 35% efficient with a rated output of 350 MW, and 75% of the waste heat is discharged into the stream, which flows at 150 m3/s. Before the power plant starts operations, the stream temperature was 20◦C. If the minnows can handle max- imum stream temperatures of 22◦C, will the water be safe at the point of cooling water discharge? (Assume that the waste heat is discharged to the flow of the whole stream.)
Engineering
1 answer:
vitfil [10]3 years ago
7 0

Answer:

Yes the water will be safe at the point of cooling water discharge

Explanation:

Power losses in plant= 350- 350×0.35=227.5MW

Rate of heat rejection to stream= 0.75× 227.5= 170.625MW

Rate of heat rejection= rate of flow of water× c × ΔT

170625000= 150000000× 4.186 × (Final temperature- 20)

Final temperature= 20.3 ◦C

The final temperature of stream will be 20.3 ◦C. Thechange is very small so the minnows will be able to handle this temperature.

You might be interested in
A 40kg steel casting (Cp=0.5kJkg-1K-1) at a temperature of 4500C is quenched in 150kg of oil (Cp=2.5kJkg-1K-1) at 250C. If there
podryga [215]
Of the oil I hope this help
4 0
3 years ago
A power plant operates on a regenerative vapor power cycle with one open feedwater heater. Steam enters the first turbine stage
faltersainse [42]

Answer:

a) 0.489

b) 54.42 kg/s

c) 247.36 kW/s

Explanation:

Note that all the initial enthalpy and entropy values were gotten from the tables.

See the attachment for calculations

4 0
3 years ago
A heat engine receives heat from a heat source at 1453 C and has a thermal efficiency of 43 percent. The heat engine does maximu
xxMikexx [17]

Answer:

a) 1253 kJ

b) 714 kJ

c) 946 C

Explanation:

The thermal efficiency is given by this equation

η = L/Q1

Where

η: thermal efficiency

L: useful work

Q1: heat taken from the heat source

Rearranging:

Q1 = L/η

Replacing

Q1 = 539 / 0.43 = 1253 kJ

The first law of thermodynamics states that:

Q = L + ΔU

For a machine working in cycles ΔU is zero between homologous parts of the cycle.

Also we must remember that we count heat entering the system as positiv and heat leaving as negative.

We split the heat on the part that enters and the part that leaves.

Q1 + Q2 = L + 0

Q2 = L - Q1

Q2 = 539 - 1253 = -714 kJ

TO calculate a temperature for the heat sink we must consider this cycle as a Carnot cycle. Then we can use the thermal efficiency equation for the Carnot cycle, this one uses temperatures:

η = 1 - T2/T1

T2/T1 = 1 - η

T2 = (1 - η) * T1

The temperatures must be given in absolute scale (1453 C = 1180 K)

T2 = (1 - 0.43) * 1180 = 673 K

673 K = 946 C

8 0
3 years ago
Compute L, T, M, LC, and R and stations of the BC and EC for the circular curve with the given data of: I (delta) = 22°15′00" an
Mars2501 [29]

Answer:

L = 475.718

T = 240.89 ft

M = 23.0195

LC = 472.728

R = 1225 ft

Explanation:

See the attached file for the calculation.

8 0
2 years ago
(SI units) Molten metal is poured into the pouring cup of a sand mold at a steady rate of 400 cm3/s. The molten metal overflows
maxonik [38]

Answer:

diameter of the sprue at the bottom is 1.603 cm

Explanation:

Given data;

Flow rate, Q = 400 cm³/s

cross section of sprue: Round

Diameter of sprue at the top d_{top} = 3.4 cm

Height of sprue, h = 20 cm = 0.2 m

acceleration due to gravity g = 9.81 m/s²

Calculate the velocity at the sprue base

V_{base} = √2gh

we substitute

V_{base} = √(2 × 9.81 m/s² × 0.2 m )

V_{base} = 1.98091 m/s

V_{base} = 198.091 cm/s

diameter of the sprue at the bottom will be;

Q = AV = (πd_{bottom}^2/4) × V_{base}

d_{bottom} = √(4Q/πV_{base})

we substitute our values into the equation;

d_{bottom} = √(4(400 cm³/s) / (π×198.091 cm/s))

d_{bottom}  = 1.603 cm

Therefore, diameter of the sprue at the bottom is 1.603 cm

6 0
2 years ago
Other questions:
  • The difference between ideal voltage source and the ideal current source​
    7·2 answers
  • Design a stepped-impedance low-pass filter having a cutoff frequency of 3 GHz and a fifth-order 0.5 dB equal-ripple response. As
    9·1 answer
  • A spherical seed of 1 cm diameter is buried at a depth of 1 cm inside soil (thermal conductivity of 1 Wm-1K-1) in a sufficiently
    14·1 answer
  • A shift register is a synchronous sequential circuit that will store or move data. It consists of several flip-flops, which are
    11·1 answer
  • What are the basic parts of a radio system
    15·1 answer
  • A very large plate is placed equidistant between two vertical walls. The 10-mm spacing between the plate and each wall is filled
    11·1 answer
  • All of the following are categories for clutch covers except
    11·1 answer
  • Benzene gas (C6H6) at 25° C and 1 atm, enters a combustion chamber operating at steady state and burns with 95% theoretical air
    6·2 answers
  • When an output gear is larger than the input gear the greater ratio is greater than 1 T or F​
    9·1 answer
  • A spherical metal ball of radius r_0 is heated in an oven to a temperature of T_1 throughout and is then taken out of the oven a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!