Answer:
a) 0.489
b) 54.42 kg/s
c) 247.36 kW/s
Explanation:
Note that all the initial enthalpy and entropy values were gotten from the tables.
See the attachment for calculations
Answer:
a) 1253 kJ
b) 714 kJ
c) 946 C
Explanation:
The thermal efficiency is given by this equation
η = L/Q1
Where
η: thermal efficiency
L: useful work
Q1: heat taken from the heat source
Rearranging:
Q1 = L/η
Replacing
Q1 = 539 / 0.43 = 1253 kJ
The first law of thermodynamics states that:
Q = L + ΔU
For a machine working in cycles ΔU is zero between homologous parts of the cycle.
Also we must remember that we count heat entering the system as positiv and heat leaving as negative.
We split the heat on the part that enters and the part that leaves.
Q1 + Q2 = L + 0
Q2 = L - Q1
Q2 = 539 - 1253 = -714 kJ
TO calculate a temperature for the heat sink we must consider this cycle as a Carnot cycle. Then we can use the thermal efficiency equation for the Carnot cycle, this one uses temperatures:
η = 1 - T2/T1
T2/T1 = 1 - η
T2 = (1 - η) * T1
The temperatures must be given in absolute scale (1453 C = 1180 K)
T2 = (1 - 0.43) * 1180 = 673 K
673 K = 946 C
Answer:
L = 475.718
T = 240.89 ft
M = 23.0195
LC = 472.728
R = 1225 ft
Explanation:
See the attached file for the calculation.
Answer:
diameter of the sprue at the bottom is 1.603 cm
Explanation:
Given data;
Flow rate, Q = 400 cm³/s
cross section of sprue: Round
Diameter of sprue at the top
= 3.4 cm
Height of sprue, h = 20 cm = 0.2 m
acceleration due to gravity g = 9.81 m/s²
Calculate the velocity at the sprue base
= √2gh
we substitute
= √(2 × 9.81 m/s² × 0.2 m )
= 1.98091 m/s
= 198.091 cm/s
diameter of the sprue at the bottom will be;
Q = AV = (π
/4) × 
= √(4Q/π
)
we substitute our values into the equation;
= √(4(400 cm³/s) / (π×198.091 cm/s))
= 1.603 cm
Therefore, diameter of the sprue at the bottom is 1.603 cm