Answer:
Check the explanation
Explanation:
Kindly check the attached image below to get the step by step explanation to the above question.
<u>Explanation:</u>
Task 1 time period = 200ms, Task 2 time period = 300ms
Task ticked =
→ 5 times
Task 2 ticked =
→ 3 times
At 600 ms → 200ms 200ms 200ms
300ms → 
Largest time period = H.C.M of (200ms, 300ms)
= 600ms
Answer: c. The VW engineers involved were ethically obligated to hold paramount the health, welfare and safety of the public even if their supervisors directed them to implement software and hardware that enabled cheating on the emissions testing software.
Explanation: The National Society of professional Engineers, NSPE define the code of ethics which must guide engineers in their duty. These codes act as principles of personal conduct, towards the public and their employers.
One of the areas covered by these codes is overriding importance of the safety and health of the public to any other factor. In addition, engineers are to avoid deception and maintain the reputation of their profession. These cannot be sacrificed for the financial gain of their employers or explained away by saying they are following the direction of their employers. While they have certain responsibilities to their employers, the health welfare and safety of the public is more important.
Answer:
center left-turn lane
Explanation:
A <em>center left turn lane</em> will be marked as described. The arrows, if present, generally indicate that left turns are permitted from the lane with these markings.
__
If the double yellow lines are solid, they are considered to be a "barrier" and are not to be crossed.
Answer:
T=151 K, U=-1.848*10^6J
Explanation:
The given process occurs when the pressure is constant. Given gas follows the Ideal Gas Law:
pV=nRT
For the given scenario, we operate with the amount of the gas- n- calculated in moles. To find n, we use molar mass: M=102 g/mol.
Using the given mass m, molar mass M, we can get the following equation:
pV=mRT/M
To calculate change in the internal energy, we need to know initial and final temperatures. We can calculate both temperatures as:
T=pVM/(Rm); so initial T=302.61K and final T=151.289K
Now we can calculate change of U:
U=3/2 mRT/M using T- difference in temperatures
U=-1.848*10^6 J
Note, that the energy was taken away from the system.