The volume (in liters) that the gas will occupy if the pressure is increased to 13.5 atm and the temperature is decreased to 15 °C is 15 L
From the question given above, the following data were obtained:
Initial pressure (P₁) = 8.5 atm
Initial volume (V₁) = 24 L
Initial temperature (T₁) = 25 °C = 25 + 273 = 298 K
Final pressure (P₂) = 13.5 atm
Final temperature (T₂) = 15 °C = 15 + 273 = 288 K
<h3>Final volume (V₂) =? </h3>
- The final volume of the gas can be obtained by using the combined gas equation as illustrated below:

Cross multiply
298 × 13.5 × V₂ = 204 × 288
4023 × V₂ = 58752
Divide both side by 4023

<h3>V₂ = 15 L </h3>
Therefore, the final volume of the gas is 15 L
Learn more: brainly.com/question/25547148
Answer:
The answer is 1.61 × 10²³ atoms
Explanation:
To determine number of atoms, we will use the formula below
Number of atoms = number of moles (n) × avogadro's constant (6.02 x 10²³)
n was not provided, hence we will solve for n
n = mass/ molar mass
molar mass of carbon monoxide, CO (where C is 12 and O is 16) is 12 + 16 = 28
mass was provided in the question as 7.48
n = 7.48/28
n = 0.267
Hence,
number of atoms = 0.267 × 6.02 x 10²³
= 1.61 × 10²³ atoms
Answer:
88,7 mL of solution
Explanation:
Molarity (Represented as M) is an unit of chemical concentration that is defined as the ratio between moles of solute per liters of solution, that is:
Molarity = moles of solute / Liters of solution
If molarity of KCN solution is 0,0820M and moles of KCN are 7,27x10⁻³ moles:
0,0820M = 7,27x10⁻³ moles / Liters of solution
Liters of solution = 0,0887L = <em>88,7 mL of solution</em>
I hope it helps!
Answer:
A compound
Example:
Sugar contains carbon, hydrogen and oxygen. Water (H2O) has two hydrogen atoms (H2) and one oxygen atom (O). So both sugar and water are chemical compounds. Together they are a mix of chemical compounds.
Converting the temperature, 295 K from Kelvin to Celsius scale:

Water has a boiling point of
and a melting point of 
When we compare water at two different temperatures,
we can say that water is in liquid form at both these temperatures as both of them are quite below the boiling temperature and above the melting temperature.
The temperature difference between water at the given two temperatures = 
Water at
is at a higher temperature and so is warmer than water at a lower temperature of
.