Equivalent Fractions for 9/25:
9/25, 18/50, 27/75, 36/100, 45/125, 54/150, 63/175, 72/200, 81/225, 90/250, and so on ...
Answer:
There's one 0.
Step-by-step explanation:
Because I multiplied it and there's only one 0.
The difference of two squares factoring pattern states that a difference of two squares can be factored as follows:

So, whenever you recognize the two terms of a subtraction to be two squares, you can factor it as the sum of the roots multiplied by the difference of the roots.
In this case, the squares are obvious:
is the square of
, and
is the square of 
So, we can factor the expression as
![(x+2)^2 - (y+2)^2 = [(x+2)+(y+2)] - [(x+2)+(y+2)]](https://tex.z-dn.net/?f=%20%28x%2B2%29%5E2%20-%20%28y%2B2%29%5E2%20%3D%20%5B%28x%2B2%29%2B%28y%2B2%29%5D%20-%20%5B%28x%2B2%29%2B%28y%2B2%29%5D%20)
(the round parenthesis aren't necessary, I used them only to make clear the two terms)
We can simplify the expression summing like terms:
![(x+2)^2 - (y+2)^2 = [(x+2)+(y+2)][(x+2)-(y+2)] = (x+y+4)(x-y)](https://tex.z-dn.net/?f=%28x%2B2%29%5E2%20-%20%28y%2B2%29%5E2%20%3D%20%5B%28x%2B2%29%2B%28y%2B2%29%5D%5B%28x%2B2%29-%28y%2B2%29%5D%20%3D%20%28x%2By%2B4%29%28x-y%29%20)