Answer:
A.compared
Explanation:
Fossils help figure out the time that organisms lived. If you know one of the fossils, it can be used as a reference for others around.
Answer:
Explanation:
At constant pressure , work done by gas = P x ΔV where P is pressure and ΔV is change in volume
ΔV = 9.2 - 5.6 = 3.6 L
3.6 L = 3.6 x 10⁻³ m³
ΔV = 3.6 x 10⁻³ m³
P = 3.7 x 10³ Pa
So work done
= 3.7 x 10³ x 3.6 x 10⁻³ J
= 13.32 J .
( c ) is the answer , because work is done by the gas so it will be positive.
Answer:
a. λ = 647.2 nm
b. I₀ 9.36 x 10⁻⁵
Explanation:
Given:
β = 56.0 rad , θ = 3.09 ° , γ = 0.170 mm = 0.170 x 10⁻³ m
a.
The wavelength of the radiation can be find using
β = 2 π / γ * sin θ
λ = [ 2π * γ * sin θ ] / β
λ = [ 2π * 0.107 x 10⁻³m * sin (3.09°) ] / 56.0 rad
λ = 647.14 x 10⁻⁹ m ⇒ λ = 647.2 nm
b.
The intensity of the central maximum I₀
I = I₀ (4 / β² ) * sin ( β / 2)²
I = I₀ (4 / 56.0²) * [ sin (56.0 /2) ]²
I = I₀ 9.36 x 10⁻⁵
Answer:
Δy = v₀t + (1/2)gt²
where g = 9.81 m/s if the body is moving downwards and g = -9.81 m/s if the body is moving upwards
Explanation:
The general kinematic equation for horizontal displacement is gives as:
Δx = v₀t + (1/2)at²
Where
Δx = change in the x direction
v₀ = initial velocity
t = time
a = acceleration
If the body is vertically instead of horizontally, Δx is changed to Δy
Δy = v₀t + (1/2)at²
For a vertical moving body, the acceleration it experiences is the gravitational accerelation of the earth 'g'
So the equation becomes:
Δy = v₀t + (1/2)gt²
where g = 9.81 m/s if the body is moving downwards and g = -9.81 m/s if the body is moving upwards
True usally quizlet teachers get there work from there