1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harman [31]
2 years ago
13

How much force is needed to accelerate a 66 kg skier at 2 m/sec^2?

Physics
1 answer:
Ymorist [56]2 years ago
5 0
The equation of force is M(mass)•A(acceleration)=132N
You might be interested in
Weightlessness is experienced by an astronaut in space. This means that the astronaut's muscles have to be stronger to move his
just olya [345]
The answer is false. The speed of the astronaut cancels out the force of gravity, causing a 'stationary freefall'. While under these effects, it is not required for an astronaut to 'strengthen' his body.
4 0
3 years ago
Read 2 more answers
The half-life of the radioactive isotope Carbon-14 is about 5730 years. Find N in terms of t. The amount of a radioactive elemen
Fudgin [204]

The complete queston is The amount of a radioactive element A at time t is given by the formula

A(t) = A₀e^kt

Answer:  A(t) =N e^( -1.2 X 10^-4t)

Explanation:

Given

Half life =  5730 years.

A(t) =A₀e ^kt

such that

A₀/ 2 =A₀e ^kt

Dividing both sides by A₀

1/2 = e ^kt

1/2 = e ^k(5730)

1/2 = e^5730K

In 1/2 =  5730K

k = 1n1/2 / 5730

k = 1n0.5 / 5730

K= -0.00012 = 1.2 X 10^-4

So that expressing   N in terms of t, we have

A(t) =A₀e ^kt

A₀ = N

A(t) =N e^ -1.2 X 10^-4t

7 0
3 years ago
The radius of Saturn is about 10 times the radius of Venus and the mass is about 100 times that of Venus. How much larger is the
lora16 [44]

let the mass of Venus is M then mass of Saturn is 100 M

similarly if the radius of Venus is R then the radius of Saturn is 10 R

now the force of gravity on a man of mass "m" at the surface of Venus is given by

F_1 = \frac{GMm}{R^2}

now similarly the gravitational force on the man if he is at the surface of Saturn

F_2 = \frac{G*100M*m}{(10R)^2}

F_2 = \frac{GMm}{R^2}

so here if we divide the two forces

\frac{F_1}{F_2} = 1

so here we can say

F1 = F2

so on both planets the gravitational force will be same

7 0
3 years ago
An accepted value for the acceleration due to gravity is 9.801 m/s2. In an experiment with pendulums, you calculate that the val
Fed [463]

g Generally the accepted value of acceleration due to gravity is 9.801 m/s^2

as per the question the acceleration due to gravity is found to be 9.42m/s^2 in an experiment performed.

the difference between the ideal and observed value is 0.381.

hence the error is -\frac{0.381}{9.801} *100

                                                            =3.88735 percent

the error is not so high,so it can be  accepted.

now we have to know why this occurs-the equation of time period of the simple pendulum is give as-T=2\pi\sqrt[2]{l/g}

                                                      g=4\pi^2\frac{l}{T^2}

As the experiment is done under air resistance,so it will affect to the time period.hence the time period will be more which in turn decreases the value of g.

if this experiment is done in a environment of zero air resistance,we will get the value of g which must be approximately equal to 9.801  m/s^2

5 0
3 years ago
A rope of length L has circular cross-sectional area A and density rho = m/V , where m is the mass of the rope and V = A · L is
hram777 [196]

Answer: µ = ρ¹ * A¹

Where x=1 and y=1

Explanation: According to the question, the mass per unit length (µ) is related to the density (ρ) and area A are related by the formulae below

µ = ρ * A

The dimension for each of these quantities is given below

Since µ is mass per unit length, unit is Kg/m and the dimension is ML^-1

ρ is density with unit kg/m³ and the dimension is ML^3

A is area with unit m², thus the dimension is M^2

Note that using dimensional analysis means we will be using the 3 fundamental quantities (mass, length and time) in our analysis.

Their dimensions below

Mass = M

Length = L

Time = T

Since the mass per unit length is related to density and area, we have a mathematical equation to provide a solution as shown below

µ = ρ^x * A^y.

By getting the power of x and y we will be able to get the formula that relates the quantities.

This is done by slotting in the dimensions of the respective quantities.

ML^-1 = (ML^-3)^x * (L²) ^y

By using law of indices on the right hand side of the equation, we have that

ML^-1 = (M^x * L^-3x) * (L^2y)

Also applying law of indices on the right hand side, we have that

ML^-1 = (M^x) * (L^-3x +2y)

The next step is to relate equal variables on both sides

For the M variable

M¹ = M^x which results to

x = 1

For the L variable

L^-1 = L^-3x+2y which results to

-1 = - 3x +2y

But x = 1

We have that

-1 = - 3(1) +2y

-1 = - 3 + 2y

-1 +3= 2y

2 = 2y

y = 1

Thus x=1 and y=1 and the formulae that relates the quantities is

µ = ρ¹ * A¹

3 0
3 years ago
Other questions:
  • The total amount of energy in the universe is
    6·1 answer
  • While painting the top of an antenna 275 m in height, a worker accidentally lets a 1.00 L water bottle fall from his lunchbox. T
    8·1 answer
  • Which equation would you use to solve the following problem? An object is moved 29 m with a force of 289 N. What is the work don
    8·1 answer
  • An object is placed 50.0 cm in front of a convex mirror. where can be the image located if the focal length is 40 cm from the mi
    14·1 answer
  • If the temperature of the developing solution is slightly above normal, radiographic images of the required density may be produ
    6·1 answer
  • 1. A ski-plane with a total mass of 1200 kg lands towards the west on a frozen lake at 30.0
    15·1 answer
  • you and your friend each drive 70 miles you drive 60 miles/hour and your friend. drives 55 miles / hour how much sonner will you
    15·1 answer
  • At the surface of Venus the average temperature is a balmy 460∘C due to the greenhouse effect (global warming!), the pressure is
    15·1 answer
  • What state of matter did the earth need to be in order for planetary differentiation to occur?
    9·1 answer
  • For a complete vector quantity, what information needs to be given?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!