Answer:
C. The motor tasks performed in the experiment were too simple.
On this case is the best option since the student wants to explain the effect of motor imagery and action observation together into the excitability. And maybe is too simple, since we need to cover other possibilities in order to analyze the excitability.
Explanation:
A. The procedure used did not include MEP recordings prior to each task.
Not true, is not a requisite record MEP prior to the task to evaluate the variable of interest on this case.
B. MEP amplitudes in an individual are typically highly consistent.
The Motor evoked potentials (MEP) "are electrical signals recorded from neural tissue or muscle after activation of central motor pathways". But on this case that's a technical aspect related to the topic and this not would be the reason why we need to withhold the presentation
C. The motor tasks performed in the experiment were too simple.
On this case is the best option since the student wants to explain the effect of motor imagery and action observation together into the excitability. And maybe is too simple, since we need to cover other possibilities in order to analyze the excitability.
D. The six different conditions were run in random order.
That's not true the student are not analyzing 6 different conditions, just 2.
Complete Question
A field mouse trying to escape a hawk runs east for 5.0m, darts southeast for 3.0m, then drops 1.0m down a hole into its burrow. What is the magnitude of the net displacement of the mouse?
Answer:
The values is 
Explanation:
From the question we are told that
The distance it travels eastward is 
The distance it travel towards the southeast is 
The distance it travel towards the south is
Let x-axis be east
y-axis south
z-axis into the ground
The angle made between east and south is 
The displacement toward x-axis is


The displacement toward the y-axis is


Now the overall displacement of the rat is mathematically evaluated as


Answer:
M = 222 fringes
Explanation:
given
λ = 559 n m = 559 × 10⁻⁹ m
radius = 0.026 mm = 0.026 ×10⁻³ m
length of the glass plate = 22.1 ×10⁻² m
using relation


= 221.79
= 221 (approx.)
hence no of bright fringe
M = m + 1
= 221 +1
M = 222 fringes
Answer:
because he give heat and energy
<span>A change in the pressure of a gas results in a more significant change in volume than it would in a liquid. is the statement that accurately describes the property of gas. Gas only depends on how you store it. the bigger the space the wider gas can expand, the smaller the space, the more compress the gas can become.</span>