I do have a couple ideas and tips that may help you win. I don’t know how the guidelines are set up so if the ideas won’t be helpful I apologize.
First off put some ice cubes in the container then sprinkle salt on them, The reaction will create an effect and be super cold.
Another idea would be to get some dry ice if you able to, This will freeze it solid within seconds.
The last idea combines the the first. Take a bowl and fill it with with water and ice (Make sure the bowl is insulated) add a small handful of salt into the bowl, Put your drink into the cooler and before shutting stir then well then close and wait for the amount of time left, Your should have a cold water bottle.
I hoped this helped you out and I hope you also win the contest.
Answer:
4 m/s
Explanation:
m1 = m2 = m
u1 = 20 m/s, u2 = - 12 m/s
Let the speed of composite body is v after the collision.
Use the conservation of momentum
Momentum before collision = momentum after collision
m1 x u1 + m2 x u2 = (m1 + m2) x v
m x 20 - m x 12 = (m + m) x v
20 - 12 = 2 v
8 = 2 v
v = 4 m/s
Thus, the speed of teh composite body is 4 m/s.
Answer:
which corresponds to the second option shown: "voltage times amperage"
Explanation:
The electric power is the work done to move a charge Q across a given difference of potential V per unit of time.
Since such electrical work is the product of the potential difference V times the charge that moves through that potential, and this work is to be calculated by the unit of time, we need to divide the product by time (t) which leads to the following final simple equation:

Notice that we replaced the quotient representing charge per unit of time (Q/t) by the actual current running through the circuit.
This corresponds to the second option shown in the question: "Voltage times amperage".