Imagine a skinny straw in the water, standing right over the hole. The WEIGHT of the water in that straw is the force on the tape. Now, the volume of water in the straw is (1 mm^2) times (20 cm). Once you have the volume, you can use the density and gravity to find the weight. And THAT's the force on the tape. If the tape can't hold that force, then it peels off and the water runs out through the hole. /// This is a pretty hard problem, because it involved mm^2, cm, and m^3. You have to be very very very careful with your units as you work through this one. If you've been struggling with it, I'm almost sure the problem is the units.
Answer:
The width of the strand of hair is 1.96 10⁻⁵ m
Explanation:
For this diffraction problem they tell us that it is equivalent to the diffraction of a single slit, which is explained by the equation
<h3> a sin θ =± m λ
</h3><h3 />
Where the different temrs are: “a” the width of the hair, λ the wavelength, θ the angle from the center, m the order of diffraction, which is the number of bright rings (constructive diffraction)
We can see that the diffraction angle is missing, but we can find it by trigonometry, where L is the distance of the strand of hair to the observation screen and "y" is the perpendicular distance to the first minimum of intensity
L = 1.25 m 100 cm/1m = 125 cm
y = 5.06 cm
Tan θ = y/L
Tan θ = 5.06/125
θ = tan⁻¹ ( 0.0405)
θ = 2.32º
With this data we can continue analyzing the problem, they indicate that they measure the distance to the first dark strip, thus m = 1
a = m λ / sin θ
a = 1 633 10⁻⁹ 1.25/sin 2.3
a = 1.96 10⁻⁵ m
a = 0.0196 mm
The width of the strand of hair is 1.96 10⁻⁵ m
<h2>
Law 1:</h2><h3>An object already in motion stays in motion, unless acted upon by a force.</h3><h3 /><h2>Law 2:</h2><h3>

</h3><h3>f = forces on an object</h3><h3>m = mass of that object</h3><h3>a = acceleration of that object</h3><h3 /><h2>Law 3:</h2><h3>Everything has an equal and opposite reaction.</h3><h3 /><h3>Hope this helps!</h3>
Answer:
They all have frequency, wavelength, amplitude, speed and also all transfer energy.
Answer:
The capacite is C=5.32 uF using the equations of voltage and energy in capacitance
Explanation:
The energy holds is 5 J and the resistor dissipates 2J so the energy total is 3J
Using:

Voltage in this case is the energy dissipated so



Using the equation to find capacitance

F
C= 5.32 uF because u is the symbol for micro that is equal to 