<u>We are given:</u>
Mass of water: 119 grams
We know that one mole of a gas occupies 22.4L of volume
<u>Number of moles of water:</u>
Number of moles = given mass / Molar mass
Number of moles = 119 / 18 [molar mass of water = 18 grams/mol]
Number of moles = 6.61 moles
<u>Volume occupied:</u>
Volume = number of moles * 22.4 L
Volume = 6.61 * 22.4
Volume = 148L
Volume (in mL) = 1.48 * 10⁻¹ mL
The chemical reaction equation for this is
XeF6 + 3H2 ---> Xe + 6HF
Assuming gas behaves ideally, we use the ideal gas formula to solve for number of moles H2 with T = 318.15K (45C), P = 6.46 atm, V = 0.579L. Then we use the gas constant R = 0.08206 L atm K-1 mol-1.
we get n = 0.1433 moles H2
to get the mass of XeF6,
we divide 0.1433 moles H2 by 3 since 1 mole XeF6 needs 3 moles H2 to react then multiply by the molecular weight of XeF6 which is 245.28 g/mole XeF6.
0.1433 moles H2 x

x

= 11.71 g XeF6
Therefore, 11.71 g of XeF6 is needed to completely react with 0.579 L of Hydrogen gas at 45 degrees Celcius and 6.46 atm.
Cumulonimbus clouds, of course!. These clouds are known to carry rain, hail, and thunder. Bigger versions are known as supercells, deadly storms that can spew out tons of rain, hail, wind, and even tornadoes!
gold is usually found in pure form because it is not reacting with other chemicals naturally.