Answer:
0.6kg
Explanation:
the unknown here is the mass of the second block
applying the law of the conservation of momentum
m₁v₁ + m₂v₂ = (m₁ + m₂) v₃
where m₁=mass of first block=2.2kg
m₂=mass of colliding block= ?
v₁= velocity of first block=1.2m/s
v₂=velocity of colliding block=4.0m/s
v₃= final velocity of combined block=1.8m/s
applying the formula above
(2.2 × 1.2) + (m₂ × 4) = (2.2 + m₂) × 1.8
2.64 + 4m₂ = 3.96 + 1.8m₂
collecting like terms
4m₂ - 1.8m₂ = 3.96 - 2.64
2.2m₂=1.32
divide both sides by 2.2
m₂= 0.6kg
Answer: The object changed directions
The object sped up
Explanation:
λ=v/f
λ-wavelength
v-speed
f-frequency
we have the wavelength(6.2 x 10^-6meters) and we use the speed of light which is equal to 3*10^8m/s
6.2*10^-6m=3*10^8m/s/f
f=(3*10^8m/s)/(6.2*10^-6)≈0.48*10^14Hz
Answer:
C) The function F(x) for 0 < x < 5, the block's initial velocity, and the value of Fr.
Explanation:
Yo want to prove the following equation:

That is, the net force exerted on an object is equal to the change in the kinetic energy of the object.
The previous equation is also equal to:
(1)
m: mass of the block
vf: final velocity
v_o: initial velocity
Ff: friction force
F(x): Force
x: distance
You know the values of vf, m and x.
In order to prove the equation (1) it is necessary that you have C The function F(x) for 0 < x < 5, the block's initial velocity, and the value of F. Thus you can calculate experimentally both sides of the equation.