Answer:
sucks cocka-doodle-doooooooo
Explanation:
he likes it jsjsjsjsjsjsjjjsnsns
In order to answer these questions, we need to know the charges on
the electron and proton, and then we need to know the electron's mass.
I'm beginning to get the creepy feeling that, in return for the generous
5 points, you also want me to go and look these up so I can use them
in calculations ... go and collect my own straw to make the bricks with,
as it were.
Ok, Rameses:
Elementary charge . . . . . 1.6 x 10⁻¹⁹ coulomb
negative on the electron
plussitive on the proton
Electron rest-mass . . . . . 9.11 x 10⁻³¹ kg
a). The force between two charges is
F = (9 x 10⁹) Q₁ Q₂ / R²
= (9 x 10⁹ m/farad) (-1.6 x 10⁻¹⁹C) (1.6 x 10⁻¹⁹C) / (5.35 x 10⁻¹¹m)²
= ( -2.304 x 10⁻²⁸) / (5.35 x 10⁻¹¹)²
= 8.05 x 10⁻⁸ Newton .
b). Centripetal acceleration =
v² / r .
A = (2.03 x 10⁶)² / (5.35 x 10⁻¹¹)
= 7.7 x 10²² m/s² .
That's an enormous acceleration ... about 7.85 x 10²¹ G's !
More than enough to cause the poor electron to lose its lunch.
It would be so easy to check this work of mine ...
First I calculated the force, then I calculated the centripetal acceleration.
I didn't use either answer to find the other one, and I didn't use " F = MA "
either.
I could just take the ' F ' that I found, and the 'A' that I found, and the
electron mass that I looked up, and mash the numbers together to see
whether F = M A .
I'm going to leave that step for you. Good luck !
Answer:
D. Molecules of a gas slow down and change to a liquid state.
Explanation:
- Condensation refers to a process by which a gas changes from gaseous state to liquid state. For example, water vapor changes to from the state of being a gas to liquid state water.
- Condensation is the opposite of evaporation and occurs when gaseous particles slow down and change into liquid state.
- Heat energy is lost during condensation and gaseous molecules lose kinetic energy making them to slow down and thus changing to liquid state,
Answer:
Explanation:
A
Those devices the hold up while the pitcher is pitching measures speed. It has nothing to do with weather and temperature.
Answer:

Explanation:
The acceleration of a circular motion is given by

where
is the angular velocity and
is the radius.
Angular velocity is related to the period, T, by

Substitute into the previous formula.


This acceleration does not depend on the linear or angular displacement. Hence, the amount of rotation does not change it.