The particles can undergo small oscillations around x₂.
The given parameters;
- <em>initial energy of the particles = E₁</em>
- <em>final energy of the particles, E₂ = 0.33E₁</em>
The movement of the particles depends on the kinetic energy of the particles.
When kinetic energy of the particles is 100%, the particles can oscillate from x₁ to x₅.
However, when the total energy of this particles is reduced to one-third (¹/₃) or 33% of the initial energy of the particle, the oscillation of the particles will be reduced.
- The maximum position the particle can oscillate is x₅
- The half position the particles can oscillate is x₃
Since 33% is less than the half of the energy of the particle, the particle will oscillate between x₁ and x₂.
Thus, we can conclude that the particles can undergo small oscillations around x₂.
Learn more here:brainly.com/question/23910777
Refer to the diagram shown below.
Assume that air resistance is ignored.
Note:
The distance, h, of a falling object with initial vertical velocity of zero at time t is
h = (1/2)gt²
where
g = 9.8 m/s²
The initial vertical velocity of the supplies is 0 m/s.
It the time taken for the supplies to reach the ground is t, then
(50 m) = (1/2)*(9.8 m/s²)*(t s)²
Hence obtain
t² = 50/4.9 = 10.2041
t = 3.1944 s
The horizontal distance traveled at a speed of 100 m/s is
d = (100 m/s)*(3.1944 s) = 319.44 m
Answer: 319.4 m (nearest tenth)
BEING HONEST , OPTIMISTIC,DISCIPLINED, PUNCTUAL ,TRUTHFUL AND GOOD ORATOR(SPEAKER) , AND HOPEFUL ARE OTHER BASIC QUALITIES AN EFFECTIVE LEADER MUST POSSESS. ALSO,HE MUST NEVER DIFFERENCE BETWEEN ANY OF HIS FOLLOWERS OR DO PARTIALLY AT ANY TIME . HE SHOULD TREAT EVERY ONE EQUALLY.
Explanation:
The answer on Edge would be (A.)= Larger and Cooler ! I'm doing the same thing as y'all. Good luck everyone.
Answer:
Spring cannot return to its original, since a part of its deformation is <u>plastic</u>, not <u>elastic</u>.
Explanation:
Physically speaking, stress is equal to the axial force divided by effective transversal area of spring. In addition, springs have usually a linear relationship between stress and strain in <u>elastic region</u>, since they are made of ductile materials. Axial force is directly proportional to axial stress, which is also directly proportional to axial strain.
Then, if force is greater than force associated with elastic limit of the spring, then spring cannot return to its original, since a part of its deformation is <u>plastic</u>, not <u>elastic</u>.