Answer:

Step-by-step explanation:
we are given equation as

Since, we have to solve it by using complete square
so, firstly we will complete square
and then we can solve for x
step-1:
Factor 2 from both sides

step-2:
Simplify it

step-3:
Add both sides 3^2

now, we can complete square

step-4:
Take sqrt both sides

step-5:
Add both sides by 3
we get

Answer:

hope it helps if it helps don'tforget to like and mark
It is often more convenient to evaluate a polynomial when it is written is "Horner form."
... f(x) = (((10x -4)x -8)x +3)x -6
The graphs offered can be distinguished by their values of f(1) and f(2), so our table can be a short one.
... f(1) = (((10·1 -4)1 -8)1 +3)1 -6 = -5 . . . . . . . eliminates graph d
... f(2) = (((10·2 -4)2 -8)2 +3)2 -6 = 96 . . . . eliminates graphs a and c
The appropriate choice is b.
Answer:
No, because as the x-values are increasing by a constant amount, the y-values are not being multiplied by a constant amount.
Step-by-step explanation:
We have a set of ordered pairs of the form (x, y)
If a function is exponential then the ratio between the consecutive values of y, is always equal to a constant.
This means that:
\frac{y_2}{y_1}=\frac{y_3}{y_2}=\frac{y_4}{y_3}=by1y2=y2y3=y3y4=b
This is: y_2=by_1y2=by1
Now we have this set of points {(-1, -5), (0, -3), (1, -1), (2, 1)}
Observe that:
\begin{gathered}\frac{y_2}{y_1}=\frac{-3}{-5}=\frac{3}{5}\\\\\frac{y_3}{y_2}=\frac{-1}{-3}=\frac{1}{3}\\\\\frac{3}{5}\neq \frac{1}{3}\end{gathered}y1y2=−5−3=53y2y3=−3−1=3153=31
Then the values of y are not multiplied by a constant amount "b"
If i is a zero, -i is also a zero.
The way you get a complex zero is by taking the square root of a negative number. Taking the sqrt (-1) = + and - i