Answer:
m = 4.65 kg
Explanation:
As we know that the mass of the water that evaporated out is given as

so the energy released in form of vapor is given as



now the heat required by remaining water to bring it from 15 degree to 100 degree



total heat required for above conversion

now by heat energy balance
heat given by granite = heat absorbed by water


Answer:
1.16 Hz
Explanation:
frequency, basically, is the number of wave on 1 second
so, in math we write like this
f = n/t
n = number of waves
t = time to do that (in sec)
f = 140/120 = 7/6 Hz
f = 1.16 Hz
Explanation:
Here are some of the ways that energy can change (transform) from one type to another:
The Sun transforms nuclear energy into heat and light energy.
Our bodies convert chemical energy in our food into mechanical energy for us to move.
An electric fan transforms electrical energy into kinetic energy.
Answer:
For Total energy and momentum to be conserved, the minimum energy of the photons released is equal to twice the rest mass energy of an electron that is 
The annihilation of electron -positron cannot produce a single photon. It is prohibited by the law of conservation of energy and momentum.
Answer:
30.22 hours
Explanation:
Given data:
A= l² = (2 x
)² = 4 x
m²
Length 'L' = 5m
current '
' = 2 A
density of free electrons 'n'= 8.5 x
/m³
Current Density 'J' =
/ A
J= 2/4 x
J= 5 x
A/m²
We can determine the time required for an electron to travel the length of the wire by
T= L/ Vd
Where,
L is length and Vd is drift velocity.
Vd can be defined by J/ n|q|
where,
n is the charge-carrier number density
|q| is is the charge carried by each charge carrier
=>1.6 x
C
T= L/ Vd
Therefore,
T= L . n|q| / J
T= (4 x 8.5 x
x |1.6 x
|)/5 x
T= 108800 seconds =>1813.33 minutes
Converting minute into hours:
T= 30.22 hours
Thus, time that is required for an electron to travel the length of the wire is 30.22 hours