Reactants
C8H18
O2
Products
CO2
H2O
Refer to the diagram shown below.
i = the current in the circuit., A
R₁ = the internal resistance of the battery, Ω
R₂ = the resistance of the 60 W load, Ω
Because the resistance across the battery is 8.5 V instead of 9.0 V, therefore
(R₁ )(i A) = 9 - 8.5 = (0.5 V)
R₁*i = 0.5 (10
Also,
R₂*i = 9.5 (2)
Because the power dissipated by R₂ is 60 W, therefore
i²R₂ = 60
From (2), obtain
i*9.5 = 60
i = 6.3158 A
From (1), obtain
6.3158*R₁ = 0.5
R₁ = 0.5/6.3158 = 0.0792 Ω = 0.08 Ω (nearest hundredth)
Answer: 0.08 Ω
The eight planets of the Solar System arranged in order from the sun:
Mercury: 46 million km / 29 million miles (.307 AU)
Venus: 107 million km / 66 million miles (.718 AU)
Earth: 147 million km / 91 million miles (.98 AU)
Mars: 205 million km / 127 million miles (1.38 AU)
Jupiter: 741 million km /460 million miles (4.95 AU)
Saturn: 1.35 billion km / 839 million miles (9.05 AU)
Uranus: 2.75 billion km / 1.71 billion miles (18.4 AU)
Neptune: 4.45 billion km / 2.77 billion miles (29.8 AU)
Astronomers often use a term called astronomical unit (AU) to represent the distance from the Earth to the Sun.
+ Pluto (Dwarf Planet): 4.44 billion km / 2.76 billion miles (29.7 AU)
( (77/4) + 76/2 )/2 = 28.625 km/h is what i got
Answer:
No temperature change occurs from heat transfer if ice melts and becomes liquid water (i.e., during a phase change). For example, consider water dripping from icicles melting on a roof warmed by the Sun. Conversely, water freezes in an ice tray cooled by lower-temperature surroundings.
Explanation:
Energy is required to melt a solid because the cohesive bonds between the molecules in the solid must be broken apart such that, in the liquid, the molecules can move around at comparable kinetic energies; thus, there is no rise in temperature. Similarly, energy is needed to vaporize a liquid, because molecules in a liquid interact with each other via attractive forces. There is no temperature change until a phase change is complete. The temperature of a cup of soda initially at 0ºC stays at 0ºC until all the ice has melted. Conversely, energy is released during freezing and condensation, usually in the form of thermal energy. Work is done by cohesive forces when molecules are brought together. The corresponding energy must be given off (dissipated) to allow them to stay together Figure 2.
The energy involved in a phase change depends on two major factors: the number and strength of bonds or force pairs. The number of bonds is proportional to the number of molecules and thus to the mass of the sample. The strength of forces depends on the type of molecules. The heat Q required to change the phase of a sample of mass m is given by
Q = mLf (melting/freezing,
Q = mLv (vaporization/condensation),
where the latent heat of fusion, Lf, and latent heat of vaporization, Lv, are material constants that are determined experimentally.