1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mrs_skeptik [129]
2 years ago
10

What is the net force on an object that has a mass of 2.5 kg and accelerates to the right at 2 m/s?

Physics
1 answer:
Nadya [2.5K]2 years ago
5 0

Answer:

5 N

Explanation:

The formula that you've to use to find the force is :

Force = Mass × Acceleration

They have already given that,

m = 2.5 kg

a = 2 ms⁻²

Let us find now.

F = m a

F = 2.5 kg ×  2 ms⁻²

F =  5 N

Hope this helps you :-)

Let me know if you have any other questions :-)

You might be interested in
Which statement best defines constructive interference? O Energy reflects back toward the source of its power. O Two waves with
Brums [2.3K]

Answer: two waves with identical crests and troughs meet

Explanation:

My teacher gave me the answer

4 0
3 years ago
What change in entropy occurs when a 0.15 kg ice cube at -18 °C is transformed into steam at 120 °c 4.
Studentka2010 [4]

<u>Answer:</u> The change in entropy of the given process is 1324.8 J/K

<u>Explanation:</u>

The processes involved in the given problem are:

1.)H_2O(s)(-18^oC,255K)\rightarrow H_2O(s)(0^oC,273K)\\2.)H_2O(s)(0^oC,273K)\rightarrow H_2O(l)(0^oC,273K)\\3.)H_2O(l)(0^oC,273K)\rightarrow H_2O(l)(100^oC,373K)\\4.)H_2O(l)(100^oC,373K)\rightarrow H_2O(g)(100^oC,373K)\\5.)H_2O(g)(100^oC,373K)\rightarrow H_2O(g)(120^oC,393K)

Pressure is taken as constant.

To calculate the entropy change for same phase at different temperature, we use the equation:

\Delta S=m\times C_{p,m}\times \ln (\frac{T_2}{T_1})      .......(1)

where,

\Delta S = Entropy change

C_{p,m} = specific heat capacity of medium

m = mass of ice = 0.15 kg = 150 g    (Conversion factor: 1 kg = 1000 g)

T_2 = final temperature

T_1 = initial temperature

To calculate the entropy change for different phase at same temperature, we use the equation:

\Delta S=m\times \frac{\Delta H_{f,v}}{T}      .......(2)

where,

\Delta S = Entropy change

m = mass of ice

\Delta H_{f,v} = enthalpy of fusion of vaporization

T = temperature of the system

Calculating the entropy change for each process:

  • <u>For process 1:</u>

We are given:

m=150g\\C_{p,s}=2.06J/gK\\T_1=255K\\T_2=273K

Putting values in equation 1, we get:

\Delta S_1=150g\times 2.06J/g.K\times \ln(\frac{273K}{255K})\\\\\Delta S_1=21.1J/K

  • <u>For process 2:</u>

We are given:

m=150g\\\Delta H_{fusion}=334.16J/g\\T=273K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 334.16J/g}{273K}\\\\\Delta S_2=183.6J/K

  • <u>For process 3:</u>

We are given:

m=150g\\C_{p,l}=4.184J/gK\\T_1=273K\\T_2=373K

Putting values in equation 1, we get:

\Delta S_3=150g\times 4.184J/g.K\times \ln(\frac{373K}{273K})\\\\\Delta S_3=195.9J/K

  • <u>For process 4:</u>

We are given:

m=150g\\\Delta H_{vaporization}=2259J/g\\T=373K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 2259J/g}{373K}\\\\\Delta S_2=908.4J/K

  • <u>For process 5:</u>

We are given:

m=150g\\C_{p,g}=2.02J/gK\\T_1=373K\\T_2=393K

Putting values in equation 1, we get:

\Delta S_5=150g\times 2.02J/g.K\times \ln(\frac{393K}{373K})\\\\\Delta S_5=15.8J/K

Total entropy change for the process = \Delta S_1+\Delta S_2+\Delta S_3+\Delta S_4+\Delta S_5

Total entropy change for the process = [21.1+183.6+195.9+908.4+15.8]J/K=1324.8J/K

Hence, the change in entropy of the given process is 1324.8 J/K

4 0
3 years ago
Sunspots appear dark because they are cooler than the surrounding solar surface. True or false
DiKsa [7]

Answer:

False, Sunspots appear dark (in visible light) due to their low temperature(cooler) than rest of the sun

Explanation:

Sunspots appear dark because they are much cooler( have low temperature than the rest of the surface contained by Sun. As they appear dark, but still they have very temperature that's why so hot. Sunspots have temperatures ranges  3,500 Celsius (3773 kelvin) and the surrounding surface of the sun has a temperature much higher of about 5,500 Celsius(5773 Kelvin). Even if we see a sunspot alone in space,  it will glow so brightly.

Learn more about sunspots :

brainly.com/question/27774496

#SPJ4

6 0
2 years ago
Waves on a pond are an example of which kind of wave?
KATRIN_1 [288]
<span>
</span><span>Waves on a pond are an example of which kind of wave? 

</span>B. surface waves
6 0
4 years ago
Your friend says that inertia is a force that keeps things in their place, either at rest or in motion. Do you and your discussi
Galina-37 [17]

Answer:

yes i agree

Explanation:

because law of inertia state that object remain at rest or in motion unless external force apply on it

8 0
3 years ago
Other questions:
  • A 6.41 $\mu C$ particle moves through a region of space where an electric field of magnitude 1270 N/C points in the positive $x$
    7·1 answer
  • Arrange the events of the big bang in sequential order
    10·1 answer
  • A bicycle wheel has spokes for support. Each spoke extends from the center of the wheel to the rim. Which method can be used to
    13·2 answers
  • Two long, parallel transmission lines, 40.0cm apart, carry 25.0-A and 73.0-A currents.A). Find all locations where the net magne
    10·1 answer
  • Which material BEST allows electricity to pass through it?
    11·1 answer
  • Calculate the parallel component of the weight of the object on the inclined plane below.
    7·1 answer
  • How far does a car travel in 30.0 s while its velocity is changing from 50.0 km/h to 80.0 km/h at a uniform rate of acceleration
    5·1 answer
  • If time is tripled and work remains the same the power will.​
    12·1 answer
  • HELP PLEASEE !!!! HELP FAST
    14·2 answers
  • If 100g of an isotope undergoes two half-lives, how many grams will be remaining?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!