Answer:
The forces of attraction are weak in gases.
Explanation:
Solid-state objects are presented as bodies in a definite form; their atoms are often intertwined into narrowly defined structures, which gives them the ability to withstand forces without apparent deformation. They are generally described as hard as well as resistant, and in them, the forces of attraction are greater than those of repulsion. In the crystalline solids, the presence of small intermolecular spaces gives way to the intervention of the bond forces, which place the cells in geometric forms.
Solid – In a solid, the attractive forces keep the particles together tightly enough so that the particles do not move past each other. Their vibration is related to their kinetic energy. In the solid the particles vibrate in place.
Liquid – In a liquid, particles will flow or glide over one another, but stay toward the bottom of the container. The attractive forces between particles are strong enough to hold a specific volume but not strong enough to keep the molecules sliding over each other.
Gas – In a gas, particles are in continual straight-line motion. The kinetic energy of the molecule is greater than the attractive force between them, thus they are much farther apart and move freely of each other. In most cases, there are essentially no attractive forces between particles. This means that a gas has nothing to hold a specific shape or volume.
Answer: Hi!
A neuron is a basic working unit of the brain. Neurons are special cells designed to transfer information to other nerve, muscle, or gland cells. They are pretty cool - looking too! (A slightly irregular circular shape with branches reaching out from all sides.) A neuron is a nerve cell. Nerve cells are the way of communication in the nervous system.
Hope this helps!
Answer:
77.96dB
Explanation:
Recall that decibels are a unit of measuring intensity of sound, and depend on the logarithm of the intensity
the intensity, measured in decibels is given by:
I(db)=10log(I/I0)
I is the intensity in MKS units; I0 is the threshold intensity for human hearing (10^-12 W/m^2)
Thus, if the two sounds together have a dB of 81, we know:
81=10log(I/I0)
using the data above, we can find the intensity of the two sounds to be
0.000125 W/m^2
therefore, one firecracker has an intensity half of that, or 0.0000625W/m^2
now use this value to find the dB of one firecracker:
I(dB0=10log(0.0000625/10^-12)=77.96dB
Answer:
his is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Air enters a nozzle steadily at 2.21 kg/m3 and 40 m/s and leaves at 0.762 kg/m3 and 192 m/s. The inlet area of the nozzle is 90 cm2.
determine (a) the mass flow rate through the nozzle, and (b) the exit area of the nozzle.
a)0.7956kg/s
b)5.437 × 10⁻³m²
Explanation:
The concepts related to the change of mass flow for both entry and exit is applied
The general formula is defined by

Where,

values are divided by inlet(1) and outlet(2) by


PART A) Applying the flow equation

PART B) For the exit area we need to arrange the equation in function of Area, that is

These are all followed and prompted by a question