1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oduvanchick [21]
3 years ago
8

The drawing shows two frictionless inclines that begin at ground level (h = 0 m) and slope upward at the same angle θ. One track

is longer than the other, however. Identical blocks are projected up each track with the same initial speed v0. On the longer track the block slides upward until it reaches a maximum height H above the ground. On the shorter track the block slides upward, flies off the end of the track at a height H1 above the ground, and then follows the familiar parabolic trajectory of projectile motion. At the highest point of this trajectory, the block is a height H2 above the end of the track. The initial total mechanical energy of each block is the same and is all kinetic energy. The initial speed of each block is v0 = 6.94 m/s, and each incline slopes upward at an angle of θ = 50.0°. The block on the shorter track leaves the track at a height of H1 = 1.25 m above the ground. Find (a) the height H for the block on the longer track and (b) the total height H1 + H2 for the block on the shorter track.

Physics
2 answers:
Elena L [17]3 years ago
8 0

Answer:

a). H=2.45m

b). H_{max}=1.94m

Explanation:

For the block that stays on the track, its maximal height is attained when all of the kinetic energy  is converted to potential energy

a).

The height for the block on the longer track can by find using this equation:

\frac{1}{2}*m*v_o^2=m*g*H

Cancel the mass as a factor in each element in the equation

H=\frac{v_o^2}{2*g}

H=\frac{(6.94m/s)^2}{2*9.8m/s^2}

H=2.45m

b).

The other lost some kinetic energy so, use a projectile motion to determine the total height for the other bock:

E_k=E_p

E_k=m*g*H_1

E_k=\frac{1}{2}*m*v_o^2-\frac{1}{2}*m*v^2

m*g*H_1=\frac{1}{2}*m*(v_o^2-v^2)

Solve to v'

v^2=v_o^2-2*g*H_1

v=\sqrt{v_o^2-2*g*H_1}=\sqrt{(6.94m/s)^2-2*9.8m/s^2*1.25m}

v=4.8m/s

H_{max}=H_1+\frac{v^2*sin(50)}{2*g}=1.25m+\frac{(4.8m/s)^2*sin(50)}{2*9.8m/s^2}

H_{max}=1.94m

Lyrx [107]3 years ago
3 0

Answer:

(a) H = 1.41 m

(b)   H₁ + H₂ = 1.35 m

Explanation:

LONGER  TRACK  

To calculate the height H of the longer track, we use the equation of motion on an inclined plane:

V² = U² -2gH---------------------------------------------- (1)

H = (U²- V²)/ 2g------------------------------------------- (2)

Since the block came to rest at height H, it implies that the final velocity V =0

Vertical component of the Initial velocity U =   6.94Sin 50°

Substituting into (2)

H = (6.94Sin 50°)²/(20)

  = 1.4131

 = 1.41 m

SHORTER TRACK (First Motion)

For the shorter track, the velocity  (Vf)  of the block at the end of the track is calculated as thus:

Initial velocity , V₀=   6.94 m/s

The vertical component of the velocity is 6.94Sin 50°

From the Law of Equation:

V² = U² -2gH---------------------------------------------- (1)

Substituting into (1)

V²  =  (6.94 Sin 50⁰)² – (2 x10 x1.25)

    =  28.2635 – 25

    = 3.2635

 Vf    = √3.2635

        = 1.8065m/s

       =   1.81 m/s

SHORTER TRACK (2nd Motion)

The block flew off at the end of the track in a projectory motion as shown above. This implies that the velocity (Vf) will be tangential to the path of motion and inclined as 50⁰ to the horizontal.

The vertical component of Vf   = 1.8065 Sin 50⁰  

Initial Velocity U = 1.8065 Sin 50⁰  

At the maximum height of trajectory, final velocity, V = 0

To calculate H₂, we deploy the equation of motion in equation (1)

Substituting our new values into (1), we have:

0 = (1.8065 Sin 50⁰)² – (2 x10) x H₂

H₂ = (1.8065 Sin 50⁰)²/ 20

    =   0.09575 m

H₁ + H₂ = 1.25 + 0.09575

             = 1.34575‬

             =  1.35 m

You might be interested in
Electro negativity increases when atoms __. (Apex)
abruzzese [7]
C. I took the test...........
3 0
3 years ago
Read 2 more answers
Near the end of a marathon race, the first two runners are separated by a distance of 45.6 m. The front runner has a velocity of
morpeh [17]

Answer:17.08 s

Explanation:

Given

distance between First and second Runner is 45.6 m

speed of first runner(v_1)=3.1 m/s

speed of second runner(v_2)=4.65 m/s

Distance between first runner and finish line is 250 m

Second runner need to run a distance of 250+45.6=295.6 m

Time required by second runner t=\frac{295.6}{4.65}=63.56 s

time required by first runner to reach finish line=\frac{250}{3.1}=80.64 s

Thus second runner reach the finish line 80.64-63.56=17.08 s earlier

3 0
3 years ago
As Aubrey watches this merry-go-round for a total of 2 minutes, she notices the black horse pass by 15 times. What is the period
Hunter-Best [27]
Periodic time is the time taken for one complete oscillation by a body in circular motion. In this case the merry-go round takes 2 minutes to cover 15 complete oscillations. 2 Minutes = 120 seconds
Hence, 15 oscillations takes 120 secs
         thus 1 oscillation takes 120/15 = 8 seconds
therefore the period of the merry-go-round = 8 seconds
8 0
3 years ago
Read 2 more answers
The following are secondary sources of energy except a.coal b crude oil c nuclear d wind e wood
monitta

Answer:

d) Wind

Explanation:

Secondary energy is energy produced by converting energy available in its natural state in the environment. Hence Wind is a primary source not a secondary source

8 0
2 years ago
A bowling ball (mass = 7.2 kg, radius = 0.11 m) and a billiard ball (mass = 0.38 kg, radius = 0.028 m) may each be treated as un
Semenov [28]

Answer:

Explanation:

Given that

Mass of bowling ball M1=7.2kg

The radius of bowling ball r1=0.11m

Mass of billiard ball M2=0.38kg

The radius of the Billiard ball r2=0.028m

Gravitational constant

G=6.67×10^-11Nm²/kg²

The magnitude of their distance apart is given as

r=r1+r2

r=0.028+0.11

r=0.138m

Then, gravitational force is given as

F=GM1M2/r²

F=6.67×10^-11×7.2×0.38/0.138²

F=9.58×10^-9N

The force of attraction between the two balls is

F=9.58×10^-9N

3 0
2 years ago
Other questions:
  • Gravitational force is reduced by _____ between objects.
    12·2 answers
  • In beachville, the last high tide occurred at 1:00 p.m. the next high tide will happen around _____. 1:25
    13·2 answers
  • A pendulum in a grandfather clock oscillates back and forth twice in one second what is it’s period
    7·1 answer
  • A weightlifter curls a 30 kg bar, raising it each time a distance of 0.50 m .How many times must he repeat this exercise to burn
    7·1 answer
  • May someone please help me with this The ability to perceive accurately, appraise, and express emotion is called
    10·2 answers
  • What is the gravitational force between Earth and a 10 kg object on Earth’s surface?
    9·1 answer
  • What mechanical layer lies below the lithosphere
    13·2 answers
  • Why is Tycho Brahe often called “the greatest naked-eye astronomer” of all time?
    8·1 answer
  • 4. A microchip lets computers process information very quickly,
    10·1 answer
  • A 4-kg object is moving with a speed of 5 m/s at a height of 2 m. The kinetic
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!