In 1871, a Russian Chemist, Dimitri Mendeleev, gave a useful scheme for classification of elements. He presented the first regular periodic table in which elements of similar chemical properties were arranged in eight vertical columns called groups. The horizontal rows of table were called periods. He arranged elements in ascending order of their atomic masses and found that elements having similar chemical properties appeared at regular intervals. This observation was called Periodic Law.
This means a release of free energy from the system corresponds to a negative change in free energy, but to a positive change for the surroundings.
Answer:
<h3>5.06282 × 10²⁴ molecules</h3>
Explanation:
The number of molecules of Ca2(SO3) can be found by using the formula
<h3>N = n × L</h3>
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have
N = 8.41 × 6.02 × 10²³
We have the final answer as
<h3>5.06282 × 10²⁴ molecules</h3>
Hope this helps you
Explanation:
The given data is as follows.
= 0.483,
= 0.173 M,
= 0.433 M,
= 0.306 M,
= 9.0 atm
According to the ideal gas equation, PV = nRT
or, P =
Also, we know that
Density = 
So, P = MRT
and, M = 
= 
= 
= 0.368 mol/L
Now, we will calculate the cell potential as follows.
E = ![E^{o} - \frac{0.0591}{n} log \frac{[Co^{2+}]^{2}[Cl_{2}]}{[Co^{3+}][Cl^{-}]^{2}}](https://tex.z-dn.net/?f=E%5E%7Bo%7D%20-%20%5Cfrac%7B0.0591%7D%7Bn%7D%20log%20%5Cfrac%7B%5BCo%5E%7B2%2B%7D%5D%5E%7B2%7D%5BCl_%7B2%7D%5D%7D%7B%5BCo%5E%7B3%2B%7D%5D%5BCl%5E%7B-%7D%5D%5E%7B2%7D%7D)
= 
= 
= 
= 0.483 - 0.0185
= 0.4645 V
Thus, we can conclude that the cell potential of given cell at
is 0.4645 V.