<h3><u>Answer;</u></h3>
= 11,460 years
<h3><u>Explanation;</u></h3>
- <em><u>The half life of Carbon-14 is 5,730 years
. Half life is the time taken by a radioactive material to decay by half of its original mass. Therefore, it would take a time of 5730 years for a sample of 100 g of carbon-14 to decay to 50 grams</u></em>
<em>The initial amount of carbon-14 in this case was 1 whole; thus; </em>
<em>1 → 1/2 →1/4</em>
<em>To contain 1/4 of the value, 2 half-lives have passed.
</em>
<em>But, 1 half life = 5,730 years</em>
<em>Therefore; The artifact is is therefore: 2 x 5,730
</em>
<em> = 11,460 years </em>
It really depends on the 'type' of rock it is. By this I mean whether it's impermeable or permeable. Impermeable rocks don't allow water through and permeable rocks do. It has to do with how 'porous' a rock is: how many openings it has and how spaced apart are its particles are. Sandstone is permeable and Shale impermeable.
It has a positive charge of 1
Answer:
The amount of water converted from liquid to gas with 6,768 joules is approximately 3.035 g
Explanation:
The amount of heat required to convert a given amount of liquid to gas at its boiling point is known as the latent heat of evaporation of the liquid
The latent heat of evaporation of water, Δ
≈ 2,230 J/g
The relationship between the heat supplied, 'Q', and the amount of water in grams, 'm', evaporated is given as follows
Q = m × Δ
Therefore, the amount of water, 'm', converted from liquid to gas at the boiling point temperature (100°C), when Q = 6,768 Joules, is given as follows;
6,768 J = m × 2,230 J/g
∴ m = 6,768 J /(2,230 J/g) ≈ 3.035 g
The amount of water converted from liquid to gas with 6,768 joules = m ≈ 3.035 g.