Answer:
blowing wind
Explanation:
in a desert there is no water so that cuts the first two out. then for the wind... well there are no mountains or buildings in the desert to block the wind. the last answer, crustial uplift... how often does that happen... =)
The question is incorrect, the correct question is;
Which of the following ground-state electron configurations represents the atom that has the
lowest first-ionization energy?
a) 1s2
b) 1s22s2
c) 1s22s22p6
d) 1s22s22p63s23p1
e) 1s22s22p63s23p3
The correct ground state configuration that represents the atom that has the lowest first ionization energy is 1s² 2s² 2p⁶ 3s² 3p¹.
The first ionization energy is the energy required to remove an electron from the outermost shell of an atom.
Ionization energy decreases down the group as number of shells increases but increases across the period as nuclear charge increase.
As the number of shells increases, the degree of shielding or screening decreases it easier to remove the outermost electron.
The elements whose ground state electronic configurations were shown are;
Helium - 1s²
Beryllium - 1s² 2s²
Neon - 1s² 2s² sp⁶
Aluminum - 1s² 2s² 2p⁶ 3s² 3p¹
Phosphorus - 1s² 2s² 2p⁶ 3s² 3p³
Aluminium (1s² 2s² 2p⁶ 3s² 3p¹) is a metal so it has the lowest first ionization energy since metals are highly electropositive.
Learn more: brainly.com/question/17783060
Answer: CrO₄⁻ and Ba²⁺
Explanation:
1) Chemical equation given:
2H⁺ + CrO₄⁻ + Ba²⁺ + 2OH⁻ → Ba²⁺ + CrO₄⁻ + 2H₂O
2) Analysis
That is an oxidation-reduction equation (some species are been oxidized and others are being reduced).
The given equation is known as total ionic equation, because it shows all the species as ions that are part of the reaction.
2) Specator ions
Spectator ions are the ions that do not change their oxidation state and are easily identified as they are the same in the reactant and product sides.
Here the ions that are the same in the reactant and product sides are:
CrO₄⁻ and Ba²⁺
3) Addtitional explanation.
Once you identify the spectator ions you can delete them from the equation to obtain the net ionic equation , which in this case turns to be:
2H⁺ + 2OH⁻ → 2H₂O
But this is not part of the question; it is some context to help you understand the use of the spectator ions concept.
The solubility product of a substance us calculated by the product of the concentration of the dissociated ions in the solution raise to the stoichiometric coefficient of the ions. Therefore, we need the dissociation reaction. For this, it will have the reaction:
PbI2 = Pb^2+ + 2I-
We solve as follows:
Ksp = [Pb2+][I-]^2 = <span>1.4 x 10-8
</span><span>1.4 x 10-8 = x(2x)^2
</span><span>1.4 x 10-8 = 4x^3
x = 1.5x10^-3 M
The molar solubility would be </span>1.5x10^-3 M.
I'm assuming false but really have no clue