Assuming that the change of volumen was done at constant pressure and the quantity of gas did not change, you use Charles' Law of gases, which is valid for ideal gases:
V / T = constant => V1 / T1 = V2 / T2 => V1 = [V2 / T2] * T1.
Now plug in the numbers ,where T1 and T2 have to be in absolute scale.
T1 = 38.1 + 273.15 K = 311.25K
T2 = 15.0 + 273.15 K = 288.15K
V1 = 4.5L * 311.25K / 288.15 K = 4.86L.
Answer: 4.86
<u>Answer: </u>The correct rate of the reaction is ![Rate=k[a][b]^5[c]^6](https://tex.z-dn.net/?f=Rate%3Dk%5Ba%5D%5Bb%5D%5E5%5Bc%5D%5E6)
<u>Explanation:</u>
Rate law of the reaction is the expression which expresses the rate of the reaction in the terms of the molar concentrations of the reactants with each term raised to the power of their respective stoichiometric coefficients in a balanced chemical equation.
For the given reaction:

The expression for the rate law will be: ![Rate=k[a][b]^5[c]^6](https://tex.z-dn.net/?f=Rate%3Dk%5Ba%5D%5Bb%5D%5E5%5Bc%5D%5E6)
Answer: Covalent Bond
Explanation:
Covalent bond is the type of chemical bond between two atoms that are connected to each other by the sharing of two or more electrons. example is the bond between Dinitrogen
People have died over drinking big amounts of water in fraternity initiations and while they where having the radio contest. So no there it's no life after hydration
The temperature change if 400 J of energy is added to 10 grams of water is 9.57°C.
<h3>How to calculate temperature change?</h3>
The temperature change of a calorimeter can be calculated using the following expression:
E = mc∆T
Where;
- E = energy in joules
- m = mass
- c = specific heat capacity = 4.18J/g°C
- ∆T = change in temperature
400 = 10 × 4.18 × ∆T
400 = 41.8∆T
∆T = 400/41.8
∆T = 9.57°C
Therefore, the temperature change if 400 J of energy is added to 10 grams of water is 9.57°C.
Learn more about change in temperature at: brainly.com/question/11464844