Answer:
1) F = 24 N
2) Distance = 1 m
Explanation:
We are given;
Mass; m = 120 g = 0.12 kg
Initial velocity; u = 20 m/s
Final velocity; v = 0 m/s since it came to rest.
Time; t = 0.1 s
We can calculate acceleration from Newton's first equation of motion;
a = (v - u)/t
a = (0 - 20)/0.1
a = -200 m/s²
1) magnitude of the resistance will be;
F = ma
F = 0.12 × (-200)
F = -24 N
Since, we are dealing with the magnitude, we will take the absolute value. Thus, F = 24 N
2) To find the distance moved by the bullet, we know that;
Distance = Average speed × time
Thus;
Distance = ((v + u)/2) × t
Distance = ((0 + 20)/2) × 0.1
Distance = 1 m
Answer:
246.28 K
Explanation:
The total energy of one mole of gas molecules can be calculated by the formula given below
E = 
Where R is gas constant and T is absolute temperature.
Put the value of R as 8.314 and temperature as 245 , we get
E = 
= 3055.4 J
Add 16 j to it
Total energy of gas molecules = 3055.4 + 16 = 3071.4 J.
If T be the temperature after addition of energy then
= 3071.4
T =
T = 246.28 K
I think the Answer is A (An elephant walking 1.5 m/s along the ground), and B (A jet flying across the sky 4,000 m above the ground.
The heat of fusion must be approx from 0 to infinity