Answer:
Final speed after 2 seconds = 34.6 m/s
Explanation:
Given:
Initial speed of coin (u) = 15 m/s
Time taken = 2 seconds
Find:
Final speed after 2 seconds
Computation:
Gravitational acceleration of earth = 9.8 m/s²
Using first equation of motion;
v = u + at
or
v = u + gt
where,
v = final velocity
u = initial velocity
g = Gravitational acceleration
t = time taken
v = 15 + 9.8(2)
v = 15 + 19.6
Final speed after 2 seconds = 34.6 m/s
Answer:
Q = 47.06 degrees
Explanation:
Given:
- The transmitted intensity I = 0.464 I_o
- Incident Intensity I = I_o
Find:
What angle should the principle axis make with respect to the incident polarization
Solution:
- The relation of transmitted Intensity I to to the incident intensity I_o on a plane paper with its principle axis is given by:
I = I_o * cos^2 (Q)
- Where Q is the angle between the Incident polarized Light and its angle with the principle axis. Hence, Using the relation given above:
Q = cos ^-1 (sqrt (I / I_o))
- Plug the values in:
Q = cos^-1 ( sqrt (0.464))
Q = cos^-1 (0.6811754546)
Q = 47.06 degrees

i don't know what symbol ya'll use for wavelength so i just put the word instead.We use the greek symbol lambda.So just plug in everything you know.
wavelength=4.257×10^-7x10^-2 and
v=speed of light = 3×10^8
So you should get f= 7.04 ×10^15Hz
I believe the answer would be 446.9 J.