Kelvins scale is absolute.... we would read it degrees Kelvin if the unit would be written °K but it is only K.
Answer:
n = 1 + R / f
Explanation:
The equation of the constructor is optical is
1 / f = 1 / p + 1 / q
where f is the focal length, p and q are the distance to the object and image, respectively
The exercise tells us that it is a concave lens with focal length fo, in these lenses the focal length is negative. The relationship to calculate the focal length is
1 / f = (n -n₀) (1 /R₁ - 1 /R₂)
where is n₀ the refractive index of the medium that surrounds the lens in this case it is air with n₀ = 1, you do not indicate the type of lens, but the most used lens is the concave plane, in this case R₂ = ∞, so which 1 / R₂ = 0, let's substitute
1 / f = (n-1) / R₁
n - 1 = R₁ / f
let's calculate
n = 1- R₁ / f
remember that the radius of curvature is negative, so the equation is
n = 1 + R / f
Answer:
The force applied 275 N in a direction parallel to the hill
Explanation:
Newton's second law is adequate to work this problem, in the annex we can see a free body diagram, where the weight (W) is vertical, the friction force (fr) is parallel to the surface and the normal (N ) is perpendicular to it. In general for these problems a reference system is taken that is parallel to the surface and the Y axis is perpendicular to it.
Let us decompose the weight into its two components, the angle T is taken from the axis and
Wx = W sin θ
Wy = W cos T
We write Newton's second law
∑ F = m a
X axis
The cyclist falls at a constant speed, which implies that the acceleration is zero
fr - W sin θ = 0
fr = mg sin θ
fr = 96 9.8 without 17
fr = 275 N
When the cyclist returns to climb the hill, he must apply the same force he has to overcome the friction force that always opposes the movement
. The force applied 275 N in a direction parallel to the hill
Spiral Galaxies, Irregular Galaxies and Elliptical Galaxies?
Answer:
Four; Two; One; Three
Explanation:
During a lab, a student tapes a ruler to a lab table and sets the ruler in motion. A laser detector pointed at the ruler records how many times the ruler vibrates back and forth in a period of time.
Pitch or frequency is defined as the number of cycles per unit time. We can calculate the pitch for each trials i.e.
Trial one, 
Trial two, 
Trial three, 
Trial four,
Hence, the order of the trials from least to greatest pitch is :
Trial four, Trial two, Trial one and Trial three i.e. option (d) is correct.