Answer
given,
y(x,t)= 2.20 mm cos[( 7.02 rad/m )x+( 743 rad/s )t]
length of the rope = 1.33 m
mass of the rope = 3.31 g
comparing the given equation from the general wave equation
y(x,t)= A cos[k x+ω t]
A is amplitude
now on comparing
a) Amplitude = 2.20 mm
b) frequency =


f = 118.25 Hz
c) wavelength




d) speed


v = 105.84 m/s
e) direction of the motion will be in negative x-direction
f) tension


T = 27.87 N
g) Power transmitted by the wave


P = 0.438 W
Answer:

Explanation:
The bike's acceleration can be found by using the following suvat equation:

where
v is the final velocity of the bike
u is the initial velocity
a is the acceleration
s is the distance covered
For the bike in the problem,
u = 0
v = 7 m/s
d = 40 m
Solving the equation for a, we find the acceleration:

By the work energy theorem, the total work done on the stone is given by its change in kinetic energy,

We have


Then the total work is

Answer:
The answer is Insulator, Conductor
Explanation:
A/An Insulator is a material in which charges will not move easily, whereas a/an Conductor is a material that allows charges to move about easily