Answer:
α=0.625rad/s^2
v=340m/s
w=10rad/s
θ=320rad
Explanation:
Constant angular acceleration = ∆w/∆t
angular acceleration = 20/32
α=0.625rad/s^2
Linear velocity v=wr
v = 20×17= 340m/s
Average angular velocity
w0+w1/2
w= 0+20/2
w= 20/2
w=10rad/s
What angle did it rotate with
θ=wt
θ= 10×32
=320rad
The answer is number (3) if am wrong am sry
Answer:
v₂ = 7/ (0.5)= 14 m/s
Explanation:
Flow rate of the fluid
Flow rate is the amount of fluid that circulates through a section of the pipeline (pipe, pipeline, river, canal, ...) per unit of time.
The formula for calculated the flow rate is:
Q= v*A Formula (1)
Where :
Q is the Flow rate (m³/s)
A is the cross sectional area of a section of the pipe (m²)
v is the speed of the fluid in that section (m/s)
Equation of continuity
The volume flow rate Q for an incompressible fluid at any point along a pipe is the same as the volume flow rate at any other point along a pipe:
Q₁= Q₂
Data
A₁ = 2m² : cross sectional area 1
v₁ = 3.5 m/s : fluid speed through A₁
A₂ = 0.5 m² : cross sectional area 2
Calculation of the fluid speed through A₂
We aply the equation of continuity:
Q₁= Q₂
We aply the equation of Formula (1):
v₁*A₁= v₂*A₂
We replace data
(3.5)*(2)= v₂*(0.5)
7 = v₂*(0.5)
v₂ = 7/ (0.5)
v₂ = 14 m/s
That isn"t the right answer the correct answer is B.
Solution
distance travelled by Chris
\Delta t=\frac{1}{3600}hr.
X_{c}= [(\frac{21+0}{2})+(\frac{33+21}{2})+(\frac{55+47}{2})+(\frac{63+55}{2})+(\frac{70+63}{2})+(\frac{76+70}{2})+(\frac{82+76}{2})+(\frac{87+82}{2})+(\frac{91+87}{2})]\times\frac{1}{3600}
=\frac{579.5}{3600}=0.161miles
Kelly,
\Delta t=\frac{1}{3600}hr.
X_{k}=[(\frac{24+0}{2})+(\frac{3+24}{2})+(\frac{55+39}{2})+(\frac{62+55}{2})+(\frac{71+62}{2})+(\frac{79+71}{2})+(\frac{85+79}{2})+(\frac{85+92}{2})+(\frac{99+92}{2})+(\frac{103+99}{2})]\times\frac{1}{3600}
=\frac{657.5}{3600}
\Delta X=X_{k}-X_{C}=0.021miles