Here, we are required to find the relationship between balls of different mass(a measure of weight) and different volumes.
- 1. Ball A will have the greater density
- 2. Ball C and Ball D have the same density.
- 3. Ball Q will have the greater density.
- 4. Ball X and Y will have the same density
The density of an object is given as its mass per unit volume of the object.
Mathematically;.
For Case 1:
- Va = Vb and Ma = 2Mb
- D(b) = (Mb)/(Vb) and D(a) = 2(Mb)/Vb
- Therefore, the density of ball A,
- D(a) = 2D(b).
- Therefore, ball A has the greater density.
For Case 2:
- D(c) = (Mc)/(Vc) and D(d) = (1/3)Md/(1/3)Vd
- Therefore, ball C and D have the same density
For Case 3:
- Vp = 2Vq and Mp = Mq
- D(p) = (Mq)/2(Vq) and D(q) = (Mq)/Vq
- Therefore, the density of ball P is half the density of ball Q
- Therefore, ball Q has the greater density.
For case 4:
Therefore, Ball X and Ball Y have the same density.
Read more:
brainly.com/question/18110802
Answer:
one-third of its weight on Earth's surface
Explanation:
Weight of an object is = W = m*g
Gravity on Earth = g₁ = 9.8 m/s
Gravity on Mars = g₂ =
g₁
Weight of probe on earth = w₁ = m * g₁
Weight of probe on Mars = w₂ = m * g₂ -------- ( 1 )
As g₂ = g₁/3 --------- ( 2 )
Put equation (2) in equation (1)
so
Weight of probe on Mars = w₂ = m * g₁ /3
Weight of probe on Mars =
m * g₁ =
w₁
⇒Weight of probe on Mars =
Weight of probe on earth
Answer:
C. 12m
Explanation:

from the graph v = 4m/s and t = 3 s
d = vt = 4 × 3 = 12 m
Answer:
With the help of formula.
Explanation:
We can calculate the electric potential of any point through the formula of electric potential which is given below.
Electric potential = Coulomb constant x charge/ distance of separation.
Symbolically it can be written as, V = k q/ r where
V = electric potential
k = Coulomb constant
q = charge
r = distance of separation
If we have all these data, we can simply put the data in the formula and we will get the value of electric potential.