Step 1:
Divide mass of each element with its M.mass in order to find out moles.
C = 63.2 g / 12 g/mol = Moles = 5.26 moles
H = 5.26 g / 1.008 g/mol = Moles = 5.21 moles
C = 41.6 g / 16 g/mol = Moles = 2.6 moles
Step 2:
Select moles of the element with least value and divide all moles of element by it,
C H O
5.26/2.6 : 5.21/2.6 : 2.6/2.6
2.02 : 2.00 : 1
Result:
Empirical Formula = C₂H₂O
Answer:
For this angular momentum, no quantum number exist
Explanation:
From the question we are told that
The magnitude of the angular momentum is 
The generally formula for Orbital angular momentum is mathematically represented as

Where
is the quantum number
now
We can look at the given angular momentum in this form as

comparing this equation to the generally equation for Orbital angular momentum
We see that there is no quantum number that would satisfy this equation
Answer:
The answer is C. Gas particles have no attractive forces between them.
Explanation:
Answer:
10
Explanation:
pH is defined as the negative logarithm of the concentration of hydrogen ions.
Thus,
pH = - log [H⁺]
Thus, from the formula, more the concentration of the hydrogen ions or more the acidic the solution is, the less is the pH value of the solution.
Thus, solution with pH = 3 will be more acidic than solution with pH =4
Thus, concentration of the [H⁺] when pH =3
3 = - log [H⁺]
[H⁺] = 10⁻³ M
For pH = 4, [H⁺] = 10⁻⁴ M
<u>hence, pH = 3 is 10 times more acidic than pH = 4</u>
Ion, any atom or group of atoms that bears one or more positive or negative electrical charges. Positively charged ions are called cations; negatively charged ions, anions.