The molecular weight of water is <span>18.01528 g/mol.
So in 2.92 grams there are 2.92/</span>18.01528 = 0.1621 mol of particles.
1 mol contains 6,02214 × 10^<span>23 particles by definition.
So the nr of H2O molecules is </span>0.1621 * 6,02214 × 10^23 = 0,9761 × 10^23.
Every molecule has 2 H atoms, so you have to double that.
2* 0,9761 × 10^23 = 1.952 × 10^23.
Answer:
0.5mol/L
Explanation:
First, let us calculate the number of mole NaOH = 23 + 16 + 1 = 40g/mol
Mass of NaOH from the question = 30g
Number of mole = Mass /Molar Mass
Number of mole = 30/40 = 0.75mol
Volume = 1.5L
Active mass = mole/Volume
Active mass = 0.75mol/1.5L
Active mass = 0.5mol/L
Answer:
- Increased volume of particles in the container
- greater vibration of particles
Explanation:
At higher temperature, the particles of the gas would be more active and vibrate more, or even have greater collisions. Alex can indicate this in the altered model to depict higher temperature.
Consequently, Charles law gives meaning to why there would be an increased volume of gas in the stable pressurized container, if the temperature were to be increased.
I hope this explanation was clear and concise?
Answer:
A. Magnesium
Explanation: Its because Magnesium is Heavier than Bromine and there is 24.3050 atom in Magnesium but there is only two in Bromine
I Hope This Helps:)