Answer:
Even small amounts of radiation over a prolonged period of time can be dangerous.
Explanation:
We all get exposed to radiation, such as through x-rays, and it's fine as one off experiences. However, if you're constantly dealing with radiation without any sort of protection, no matter how small the amount is, it could potentially lead to consequences like cancer. This is due to the fact that radiation can alter our genes
Answer:
ΔH°rxn = 54.08 kJ
Explanation:
Let's consider the following equations.
a) ClO(g) + O₃(g) ⇄ Cl(g) + 2 O₂(g) ΔH°rxn = –29.90 kJ
b) 2 O₃(g) ⇄ 3 O₂(g) ΔH°rxn = 24.18 kJ
We have to determine the value of heat of reaction for the following reaction: Cl(g) + O₃(g) ⇄ ClO(g) + O₂(g)
According to Hess's law, the enthalpy change in a chemical reaction is the same whether the reaction takes place in one or in several steps. That means that we can find the enthalpy of a reaction by adding the corresponding steps and adding their enthalpies. According to Lavoisier-Laplace's law, if we reverse a reaction, we also have to reverse the sign of its enthalpy.
Let's reverse equation a) and add it to equation b).
-a) Cl(g) + 2 O₂(g) ⇄ ClO(g) + O₃(g) ΔH°rxn = 29.90 kJ
b) 2 O₃(g) ⇄ 3 O₂(g) ΔH°rxn = 24.18 kJ
-------------------------------------------------------------------------------------------------
Cl(g) + 2 O₂(g) + 2 O₃(g) ⇄ ClO(g) + O₃(g) + 3 O₂(g)
Cl(g) + O₃(g) ⇄ ClO(g) +O₂(g)
ΔH°rxn = 29.90 kJ + 24.18 kJ = 54.08 kJ
The M stands for molar, so it would be 5.0 molar. is that what you need?
K5O2
convert grams to moles, divide both by the smallest mole mass, multiply that until hole.
30.5 g K ÷ 39.10 = .78 mol
6.24 g O ÷ 16 = .39 mol
.78 mol ÷ .39 mol = 2.5
.39 mol ÷ .39 mol = 1
2.5 x 2 = 5
1 x 2 = 2
K5O2
Polar is the separation of electric charge leading to a molecule or its chemical groups having an electric dipole or multipole moment.
Non-polar is one in which the electrons are distributed more symmetrically and thus does not have an abundance of charges at the opposite sides.