The chloroplasts i believe is the answer
Answer: The equilibrium constant for the given reaction is 0.0421.
Explanation:

Concentration of
= 0.0095 M
Concentration of
= 0.020 M
Concentration of
= 0.020 M
The expression of the equilibrium constant is given as:
![K_c=\frac{[PCl_3][Cl_2]}{[PCl_5]}=\frac{0.020 M\times 0.020 M}{0.0095 M}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BPCl_3%5D%5BCl_2%5D%7D%7B%5BPCl_5%5D%7D%3D%5Cfrac%7B0.020%20M%5Ctimes%200.020%20M%7D%7B0.0095%20M%7D)
(An equilibrium constant is an unit less constant)
The equilibrium constant for the given reaction is 0.0421.
Answer : Electron affinity (Eea) of an atom or molecule can be defined as the amount of energy released or spent when an electron is being added to a neutral atom or molecule in the gaseous state to form a negative ion.
Chlorine is considered to be the element which has highest electron affinity in the modern periodic table.
The general formula is X +
---->
+ energy
It is found that nonmetals have more positive Eea than metals.
Electron affinity increases across the group from left to right in the modern periodic table. Elements with small nucleus have high electron affinity.
The molarity is calculated using the following rule:
molarity = number of moles of solvent / volume of solution (in liters)
We have the volume of solution = 250 ml = 0.25 liters and the molarity = 3 m
Substituting in the equation, we get:
3 = number of moles / 0.25
number of moles = 3 x 0.25 = 0.75 moles