Answer:
a) T² = (
) r³
b) veloicity the dependency is the inverse of the root of the distance
kinetic energy depends on the inverse of the distance
potential energy dependency is the inverse of distance
angular momentum depends directly on the root of the distance
Explanation:
1) for this exercise we will use Newton's second law
F = ma
in this case the acceleration is centripetal
a = v² / r
the linear and angular variable are related
v = w r
we substitute
a = w² r
force is the universal force of attraction
F = 
we substitute

w² = 
angular velocity is related to frequency and period
w = 2π f = 2π / T
we substitute

the final equation is
T² = () r³
b) the speed of the orbit can be found
v = w r
v = 
v = 
in this case the dependency is the inverse of the root of the distance
Kinetic energy
K = ½ M v²
K = ½ M GM / r
K = ½ GM² 1 / r
the kinetic energy depends on the inverse of the distance
Potential energy
U =
U = -G mM / r
dependency is the inverse of distance
Angular momentum
L = r x p
for a circular orbit
L = r p = r Mv
L =
L =
The angular momentum depends directly on the root of the distance
1 ft =12 in
4 in = 0.333 ft
volume = (п/4)*(0.333)² = 0.087 ft²
vol. flow = spead *volume
=3 ft/s * 0.087 ft²
vol flow = 0.261 ft³/s
Explanation:
Below is an attachment containing the solution.
Answer:
Distance travel by go-cart = 500 meter
Explanation:
Given:
Speed of go cart = 25 m/s
Time travel = 20 seconds
Find:
Distance travel by go-cart
Computation:
Distance = Speed x time
Distance travel by go-cart = Speed of go cart x Time travel
Distance travel by go-cart = 25 x 20
Distance travel by go-cart = 500 meter
The complete statement is "chemical properties can be observed only when the substance in a sample of matter are changing into different substance".
It states a key concept in chemistry.
A chemical property is the ability of a substance, element or compound, to <em>transform</em> into other substances either <em>by decomposing or by combining</em> with one or more substances.
This transformation is defined as chemical reaction.
During chemical reactions some chemical bonds are broken and others are formed leading to the formation of one or more different substances called products.
Some examples of chemical properties are: reactivity with oxygen, reactivity with water, acidity, basicity, oxidation, reduction. The only way to tell if a substance has certain chemical property is by letting it react and so observe the change of the original substance into one or more different substances.