Answer: is A
The acceleration of an object is determined by its mass and the net force acting on it.
Newton's second law says that "F=ma". what this means is that the force you apply to an object is equal to its mass times how fast it is accelerating.
Hope it helped.
Let's cut through the weeds and the trash
and get down to the real situation:
A stone is tossed straight up at 5.89 m/s .
Ignore air resistance.
Gravity slows down the speed of any rising object by 9.8 m/s every second.
So the stone (aka Billy-Bob-Joe) continues to rise for
(5.89 m/s / 9.8 m/s²) = 0.6 seconds.
At that timer, he has run out of upward gas. He is at the top
of his rise, he stops rising, and begins to fall.
His average speed on the way up is (1/2) (5.89 + 0) = 2.945 m/s .
Moving for 0.6 seconds at an average speed of 2.945 m/s,
he topped out at
(2.945 m/s) (0.6 s) = 1.767 meters above the trampoline.
With no other forces other than gravity acting on him, it takes him
the same time to come down from the peak as it took to rise to it.
(0.6 sec up) + (0.6 sec down) = 1.2 seconds until he hits rubber again.
The Speed In Kilometers per year is 63.072.
Answer:
Because the velocity v (As a Vector ) is going opposite direction ( -X axis ) .
(a) The kinetic energy of the projectile when it reaches the highest point in its trajectory is 900 J.
(b) The work done in firing the projectile is 2,500 J.
<h3>
Kinetic energy of the projectile at maximum height</h3>
The kinetic energy of the projectile when it reaches the highest point in its trajectory is calculated as follows;
K.E = ¹/₂mv₀ₓ²
where;
- m is mass of the projectile
- v₀ₓ is the initial horizontal component of the velocity at maximum height
<u>Note:</u> At maximum height the final vertical velocity is zero and the final horizontal velocity is equal to the initial horizontal velocity.
K.E = (0.5)(2)(30²)
K.E = 900 J
<h3>Work done in firing the projectile</h3>
Based on the principle of conservation of energy, the work done in firing the projectile is equal to the initial kinetic energy of the projectile.
W = K.E(i) = ¹/₂mv²
where;
- v is the resultant velocity
v = √(30² + 40²)
v = 50 m/s
W = (0.5)(2)(50²)
W = 2,500 J
Thus, the kinetic energy of the projectile when it reaches the highest point in its trajectory is 900 J.
The work done in firing the projectile is 2,500 J.
Learn more about kinetic energy here: brainly.com/question/25959744
#SPJ1