Answer:
We have to conserve water because we need it live.
Explanation:
We use water to clean ourselves, drink, and use in foods.
Answer:
spring vegetation. such as hazel snow drops,primroses,saffron willow,hellsbore,Heather, wild cherry,dandelion,fruit tree,
Explanation:
under the classification
The answer is global warming
The Cross-Linkage Theory or also referred to as the glycosylation theory of aging was discovered or proposed by Johan Bjorksten in the 1940s. According to this theory, the aggregation of cross-linked proteins can damage cells and tissues this slowing down the bodily processes that eventually results to aging. In recent studies, cross-linking is associated with age-related changes in the studied proteins. Furthermore, this theory stresses out that the binding of glucose to proteins can cause various problems. Once the said binding occurs, the protein becomes impaired which leads to its performance inefficiency. Living a longer life would also mean increasing the possibility of oxygen-glucose meeting and protein. Some of the known cross-linking disorders include senile cataract and the appearance of tough, leathery, yellow skin.
The question is incomplete, however, the statements associated with this question is given in the comments and here as well:
Neither facilitated diffusion nor osmosis requires cell energy.
Diffusion of gases and other small molecules requires no energy on the part of the cell.
Active transport requires cell energy and osmosis doesn't.
Both endocytosis and active transport require cell energy.
Answer:
The correct answer is - Active transport requires cell energy and osmosis doesn't.
Explanation:
Osmosis is an example of passive transport as it does not require energy to facilitate the movement of solvent In the process of osmosis,. It moves from high concentration to low concentration through the semipermeable membrane which is along the gradient so no requirement of energy.
In the case of Active transport, it requires energy to facilitate the movement of transport as it is the movement of a substance from low concentration to a high concentration area that is against the concentration gradient.