Answer:
995 N
Explanation:
Weight of surface, w= 4000N
Gravitational constant, g, is taken as 9.81 hence mass, m of surface is W/g where W is weight of surface
m= 4000/9.81= 407.7472
Using radius of orbit of 6371km
The force of gravity of satellite in its orbit, 
Where
and 

F= 995.01142 then rounded off
F=995N
Answer:
(A) a heuristic
Explanation:
A heuristic:It is a reasoning strategy to find answers, make judgement about any something."
It is possible to choose between the options given, we have the following interpretation as; Interpretation: "A heuristic: finding answers is a thinking technique, evaluating something." Mechanism: In the heuristic approach the method is to find solutions or answers to a question by choosing the right and optimal compositions.
Answer:
oh umm it think its TV=11x*20s
Explanation:
Answer:
Twice as fast
Explanation:
Solution:-
- The mass of less massive cart = m
- The mass of Massive cart = 2m
- The velocity of less massive cart = u
- The velocity of massive cart = v
- We will consider the system of two carts to be isolated and there is no external applied force on the system. This conditions validates the conservation of linear momentum to be applied on the isolated system.
- Each cart with its respective velocity are directed at each other. And meet up with head on collision and comes to rest immediately after the collision.
- The conservation of linear momentum states that the momentum of the system before ( P_i ) and after the collision ( P_f ) remains the same.

- Since the carts comes to a stop after collision then the linear momentum after the collision ( P_f = 0 ). Therefore, we have:

- The linear momentum of a particle ( cart ) is the product of its mass and velocity as follows:
m*u - 2*m*v = 0
Where,
( u ) and ( v ) are opposing velocity vectors in 1-dimension.
- Evaluate the velcoity ( u ) of the less massive cart in terms of the speed ( v ) of more massive cart as follows:
m*u = 2*m*v
u = 2*v
Answer: The velocity of less massive cart must be twice the speed of more massive cart for the system conditions to hold true i.e ( they both come to a stop after collision ).