Answer:
Explanation:
The direction of propagation of electromagnetic wave
is given by the direction of vector E x B where E is electrical field , B is magnetic field .
Given Electric field = E i because it is along x axis
Magnetic field = Bj because it is along y axis
E x B = Ei x Bj
= EB k .
so direction of E x B is along k direction or z - axis so wave is propagating along z - axis .
<u>Answer</u>:
The coefficient of static friction between the tires and the road is 1.987
<u>Explanation</u>:
<u>Given</u>:
Radius of the track, r = 516 m
Tangential Acceleration
= 3.89 m/s^2
Speed,v = 32.8 m/s
<u>To Find:</u>
The coefficient of static friction between the tires and the road = ?
<u>Solution</u>:
The radial Acceleration is given by,




Now the total acceleration is
=>
=>
=>
=>
The frictional force on the car will be f = ma------------(1)
And the force due to gravity is W = mg--------------------(2)
Now the coefficient of static friction is

From (1) and (2)


Substituting the values, we get


The bar magnet and the electromagnet act identical. The difference being a electromagnet is a coil of wire that has a power source connect to both ends, this energizes the coil with an electromagnetic field.
Answer:
Explanation:
Given
length of window 
time Frame for which rock can be seen is 
Suppose h is height above which rock is dropped
Time taken to cover 
so using equation of motion

where y=displacement
u=initial velocity
a=acceleration
t=time
time taken to travel h is

Subtract 1 and 2 we get


and from equation 
so 

and 
so 



substitute the value of
in equation 2


The answer is: 120V
Power is the rate at which energy is supplied/transformed in time:
we can write:
V ddp in Volts represents Energy/Charge i.e. energy carried by each coulomb;
I current in Amperes represents Charge/time or coulombs passing each seconds.
combining them we have:
Power = energy/time = V • 1
or
1200 = V ⋅ 10
V = 1200/10 = 120V