Find the linear regression equation for the transformed data. x=1,2,3,4,5 y=13,19,37,91,253 log y=1.114,1.279,1.568,1.959,2,403
Talja [164]
Answer:
The answer is OPTION (D)log(y)=0.326x+0.687
<h2>
Linear regression:</h2>
It is a linear model, e.g. a model that assumes a linear relationship between the input variables (x) and the single output variable (y)
The Linear regression equation for the transformed data:
We transform the predictor (x) values only. We transform the response (y) values only. We transform both the predictor (x) values and response (y) values.
(1, 13) 1.114
(2, 19) 1.279
(3, 37) 1.568
(4, 91) 1.959
(5, 253) 2.403
X Y Log(y)
1 13 1.114
2 19 1.740
3 37 2.543
4 91 3.381
5 253 4.226
Sum of X = 15
Sum of Y = 8.323
Mean X = 3
Mean Y = 1.6646
Sum of squares (SSX) = 10
Sum of products (SP) = 3.258
Regression Equation = ŷ = bX + a
b = SP/SSX = 3.26/10 = 0.3258
a = MY - bMX = 1.66 - (0.33*3) = 0.6872
ŷ = 0.3258X + 0.6872
The graph is plotted below:
The linear regression equation is log(y)=0.326x+0.687
Learn more about Linear regression equation here:
brainly.com/question/3532703
#SPJ10
The aNSWER IS 41..AM I RIGHT?
Answer:
$27.59
Step-by-step explanation:
You multiply 30 dollars by 0.85 (1-0.15, with the 0.15 being for the 15 percent off). Which gets you to $25.50, and you then multiply it by 1.082 (the 1.082 being the tax, and the .082 part equating to the 8.2% tax percentage).
5a + s = 2662
a + s = 1198
4a = 1464
a = 366
5(366) + s = 2,662
1830 adult tickets sold
2662 - 1830 = 832
832 student tickets sold