Answer:
Explanation: Zn (s) + 2 AgCl (s) ⇒ ZnCl2 (s) + 2 Ag(s)
Less noble Zinc reduces more noble Silver
Answer:
5.625 grams
Explanation:
Start your equation with what you have been given. Place the units you need in your answer on the right side of the equal sign.
225mg
----------- X ----------- X ------------- = ? g
lb
Now start to fill in your equation and use a conversions to get rid of the units you don't want. Convert mg into grams first. The child's weight (25 lb) is placed over 1 just to get the equation lined up properly so you can see how the units cancel out.
225 mg 1 g 25 lb 5.625 g
--------------- X --------------- X ------------- = ---------------
lb 1000 mg 1 1
The lb on the top and bottom cancel each other out and you are left with just grams. Even though it is over one, that is the same at just 5.625 grams.
Answer:
pH = 12.08
Explanation:
First we <u>calculate how many moles of each substance were added</u>, using <em>the given volume and concentration</em>:
- HBr ⇒ 0.05 M * 75 mL = 3.75 mmol HBr
- KOH ⇒ 0.075 M * 74 mL = 5.55 mmol KOH
As HBr is a strong acid, it dissociates completely into H⁺ and Br⁻ species. Conversely, KOH dissociates completely into OH⁻ and K⁺ species.
As there are more OH⁻ moles than H⁺ moles (5.55 vs 3.75), we <u>calculate how many OH⁻ moles remain after the reaction</u>:
- 5.55 - 3.75 = 1.8 mmoles OH⁻
With that<em> number of moles and the volume of the mixture</em>, we <u>calculate [OH⁻]</u>:
- [OH⁻] = 1.8 mmol / (75 mL + 74 mL) = 0.0121 M
With [OH⁻], we <u>calculate the pOH</u>:
With the pOH, we <u>calculate the pH</u>:
Answer:
ΔE = -2661 KJ/mole
ΔH = -2658 KJ/mole
Explanation:
ΔH = q - PΔV
ΔE = q + w
<u>First, to find ΔE:</u>
The reaction PRODUCES 2658 kJ of h (q), and does 3 kJ of work (w).
2658 kJ(q) + 3 kJ(w) = 2661 kJ, BUT the reaction <u><em>PRODUCES</em></u> heat, which means ΔE is negative.
ΔE = -2661 KJ/mole
<u>Second, to find ΔH:</u>
ΔH = q - PΔV
ΔH = 2658 kJ(q) - PΔV
Now, the question states that butane burns at a constant pressure; that just translates to the pressure of the reaction is equal to 0.
ΔH = 2658 KJ(q) - (0)ΔV
ΔH = 2658 KJ - 0
ΔH = 2658 kJ, BUT, like before, the reaction PRODUCES heat, which also mean ΔH is negative.
ΔH = -2658 KJ/mole
I hope this helped! Have a nice week.