Answer:
The convection process plays an important role in the liquid. Due to the increasing heat supply or high amount of temperature, the fluid gets heated up, as a result of which it becomes warm, less dense and eventually rises up forming convection cells.
In the interior of the earth, the hot molten rocks get heated up due to the heat supplied by the core of the earth. This makes the magma warm and less dense and rises upward forming convection currents in the mantle.
This convection process is similar to the convection cells that form in the atmosphere, where the hot, less dense air rises up in the atmosphere forming a low-pressure zone. This uprising air forms convection cells, in which the warm air rises and as it rises high in the atmosphere, the temperature becomes low, making the air cold and it eventually sinks.
Answer:
D. 130 J
Explanation:
The coefficient of performance for a machine that is being used to cool, is given by:

Here
is the heat removed from the cold reservoir, W is the work required, that is, the energy required to remove the heat from the interior of the house,
is the cold temperature and
is the hot temperature. Recall use absolutes temperatures(
). Replacing and solving for W:

Answer:
3.2m
Explanation:
Given parameters:
Frequency of the FM radio = 9.23 x 10⁷Hz
Velocity of the waves = 3 x 10⁸m/s
Unknown:
Wavelength of the wave = ?
Solution:
To solve for the wavelength of the wave, we need the velocity equation;
Velocity = frequency x wavelength.
Radio waves are all electromagnetic radiations produced by both electrical and magnetic fields perpendicularly oriented to one another.
Since the unknown is wavelength, we solve for it:
3 x 10⁸ = 9.23 x 10⁷ x wavelength
wavelength = 
wavelength = 3.2m
Answer:
Because it's wattage is 500W.
Explanation:
This is its mearurement
Answer:
The displacement of the air drop after 3 second is 18.27 m.
Explanation:
Mass of the rain drop = m = 
Weight of the rain drop = W
Duration of time = t = 3 seconds

Drag force on rain drop = 

Motion of the rain drop:

Net force on the rain drop , F= W - D




v = 12.18 m/s
Initial velocity of the rain drop = u = 0 (since, it is starting from rest)
v=u+at (First equation of motion)


(second equation of motion)

s = 18.27 m
The displacement of the air drop after 3 second is 18.27 m.