1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Veronika [31]
3 years ago
12

A stone is thrown vertically straight up with a velocity of 2800cm/s . By neglecting the air resistance , find the maximum heigh

t achieved
Physics
1 answer:
yarga [219]3 years ago
6 0
We know that t=2.8571428571428568
and therefore 28*2.8571428571428568 - 9.8*2.8571428571428568^2/2
is around 40 m
You might be interested in
In this problem, you will apply kinematic equations to a jumping flea. Take the magnitude of free-fall acceleration to be 9.80m/
polet [3.4K]
V o - initial velocity
v = velocity at the maximum height,
v² = v o² - 2 g h
v = 0
0 = v o² - 2 g h
v o² = 2 g h = 2 · 9.80 · 0.460
v o² = 9.052
v o = √9.052 = 3.004197 m/s ≈ 3 m/s
8 0
3 years ago
Why pressure above the surface is greater than in the air​
nexus9112 [7]

Answer:

At higher elevations, there are fewer air molecules above a given surface than a similar surface at lower levels. ... Since most of the atmosphere's molecules are held close to the earth's surface by the force of gravity, air pressure decreases rapidly at first, then more slowly at higher levels.

Explanation:

7 0
3 years ago
A gray kangaroo can bound across level ground with each jump carrying it 9.1 m from the takeoff point. Typically the kangaroo le
Alona [7]

Answer:

u = 10.63 m/s

h = 1.10 m

Explanation:

For Take-off speed ..

by using the standard range equation we have

R = u² sin2θ/g

R = 9.1 m

θ = 26º,

Initial velocity = u

solving for u

u² = \frac{Rg}{sin2\theta}

u^2 = \frac{9.1 x 9.80}{sin26}

u^2 = 113.17

u = 10.63 m/s

for Max height

using the standard h(max) equation ..

v^2 = (v_osin\theta)^2 -2gh

h =\frac{(v_o^2sin\theta)^2}{2g}

h  =  \frac{(113.17)(sin26)^2}{(2 x 9.80)}}

h = 1.10 m

7 0
3 years ago
To practice Problem-Solving Strategy 17.1 for wave interference problems. Two loudspeakers are placed side by side a distance d
Nimfa-mama [501]

Complete Question

The compete question is shown on the first uploaded question

Answer:

The speed is  v  =  350 \  m/s  

Explanation:

From the question we are told that

   The  distance of separation is  d =  4.00 m  

  The distance of the listener to the center between the speakers is  I =  5.00 m

  The change in the distance of the speaker is by k  =  60 cm  =  0.6 \  m

    The frequency of both speakers is f =  700 \  Hz

Generally the distance of the listener to the first speaker is mathematically represented as

       L_1  =  \sqrt{l^2 + [\frac{d}{2} ]^2}

       L_1  =  \sqrt{5^2 + [\frac{4}{2} ]^2}

        L_1  =   5.39 \  m

Generally the distance of the listener to second speaker at its new position is  

          L_2  =  \sqrt{l^2 + [\frac{d}{2} ]^2 + k}

       L_2  =  \sqrt{5^2 + [\frac{4}{2} ]^2 + 0.6}

        L_2  =   5.64  \  m  

Generally the path difference between the speakers is mathematically represented as

        pD  = L_2 - L_1  =  \frac{n  *  \lambda}{2}

Here \lambda is the wavelength which is mathematically represented as

         \lambda =  \frac{v}{f}

=>    L_2 - L_1  =  \frac{n  *  \frac{v}{f}}{2}

=>    L_2 - L_1  =  \frac{n  *  v}{2f}  

=>    L_2 - L_1  =  \frac{n  *  v}{2f}  

Here n is the order of the maxima with  value of  n =  1  this because we are considering two adjacent waves

=>    5.64 - 5.39   =  \frac{1  *  v}{2*700}      

=>    v  =  350 \  m/s  

7 0
3 years ago
You drop a rock off a bridge. The rock's height, h (in feet above the water), after t seconds is modeled by h = – 16 t2 + 541. W
marin [14]
<span>h ( t) = h(1 sec) = -16t^2 + 541

so h (2 sec) = -16*(2)^2 + 541 = -64 + 541 = <span>477 ft

Therefore, </span></span>the height of the rock after 2 seconds is 477 feet.

I hope my answer has come to your help. Thank you for posting your question here in Brainly.
5 0
3 years ago
Other questions:
  • The wavelengthâ (w) of a wave varies inversely as its frequencyâ (f). a wave with a frequency of 800 khzâ (kilohertz) has a leng
    8·1 answer
  • PLEASE HELP!! 50 PTS!!
    6·2 answers
  • You found the distance that you will cover while braking. You can use the expected amount of time for braking to check your answ
    14·1 answer
  • Charge q is 1 unit of distance away from the source charge S. Charge p is two times further away. The force exerted between S an
    8·2 answers
  • What subtomic particle takes electric charge in friction​
    7·1 answer
  • In Which figure below is the trend line drawn correctly
    5·1 answer
  • A crate weighing 523 N rests on a plank that makes a 22.0  angle with the ground. Find the components of the crate's weight for
    10·1 answer
  • A forward horizontal force of 50 N is applied to a crate. A second horizontal force of
    15·1 answer
  • Create an energy path in the Gizmo, starting at the Sun. For each step of the path, describe the energy conversion that takes pl
    11·1 answer
  • Thor deja caer su martillo de la torre Torre Stark que tiene 95 pisos, si al llegar el Mjolnir al piso han transcurrido 9.5 segu
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!