V o - initial velocity
v = velocity at the maximum height,
v² = v o² - 2 g h
v = 0
0 = v o² - 2 g h
v o² = 2 g h = 2 · 9.80 · 0.460
v o² = 9.052
v o = √9.052 = 3.004197 m/s ≈ 3 m/s
Answer:
At higher elevations, there are fewer air molecules above a given surface than a similar surface at lower levels. ... Since most of the atmosphere's molecules are held close to the earth's surface by the force of gravity, air pressure decreases rapidly at first, then more slowly at higher levels.
Explanation:
Answer:
u = 10.63 m/s
h = 1.10 m
Explanation:
For Take-off speed ..
by using the standard range equation we have

R = 9.1 m
θ = 26º,
Initial velocity = u
solving for u



u = 10.63 m/s
for Max height
using the standard h(max) equation ..



h = 1.10 m
Complete Question
The compete question is shown on the first uploaded question
Answer:
The speed is
Explanation:
From the question we are told that
The distance of separation is d = 4.00 m
The distance of the listener to the center between the speakers is I = 5.00 m
The change in the distance of the speaker is by 
The frequency of both speakers is 
Generally the distance of the listener to the first speaker is mathematically represented as
![L_1 = \sqrt{l^2 + [\frac{d}{2} ]^2}](https://tex.z-dn.net/?f=L_1%20%20%3D%20%20%5Csqrt%7Bl%5E2%20%2B%20%5B%5Cfrac%7Bd%7D%7B2%7D%20%5D%5E2%7D)
![L_1 = \sqrt{5^2 + [\frac{4}{2} ]^2}](https://tex.z-dn.net/?f=L_1%20%20%3D%20%20%5Csqrt%7B5%5E2%20%2B%20%5B%5Cfrac%7B4%7D%7B2%7D%20%5D%5E2%7D)

Generally the distance of the listener to second speaker at its new position is
![L_2 = \sqrt{l^2 + [\frac{d}{2} ]^2 + k}](https://tex.z-dn.net/?f=L_2%20%20%3D%20%20%5Csqrt%7Bl%5E2%20%2B%20%5B%5Cfrac%7Bd%7D%7B2%7D%20%5D%5E2%20%2B%20k%7D)
![L_2 = \sqrt{5^2 + [\frac{4}{2} ]^2 + 0.6}](https://tex.z-dn.net/?f=L_2%20%20%3D%20%20%5Csqrt%7B5%5E2%20%2B%20%5B%5Cfrac%7B4%7D%7B2%7D%20%5D%5E2%20%2B%200.6%7D)
Generally the path difference between the speakers is mathematically represented as

Here
is the wavelength which is mathematically represented as

=> 
=>
=>
Here n is the order of the maxima with value of n = 1 this because we are considering two adjacent waves
=>
=>
<span>h ( t) = h(1 sec) = -16t^2 + 541
so h (2 sec) = -16*(2)^2 + 541 = -64 + 541 = <span>477 ft
Therefore, </span></span>the height of the rock after 2 seconds is 477 feet.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.