The question asks for the rate of toys per hour.
So we shall divide the total toys assembled by the total hours.
Its a five day week.
The number of hours allotted per day are 8.
So total allotted during the week are 8 × 5 = 40 hours.
Number of toys made during the week are 400.
Hence the number of toys assembled per hour per person
= number of toys / number of hours
= 400 / 40
= 10 toys per hour per person.
The average number of toys assembled per hour per person is 10.
Answer:
- The sequence of transformations that maps triangle XYZ onto triangle X"Y"Z" is <u>translation 5 units to the left, followed by translation 1 unit down, and relfection accross the x-axis</u>.
Explanation:
By inspection (watching the figure), you can tell that to transform the triangle XY onto triangle X"Y"Z", you must slide the former 5 units to the left, 1 unit down, and, finally, reflect it across the x-axys.
You can check that analitically
Departing from the triangle: XYZ
- <u>Translation 5 units to the left</u>: (x,y) → (x - 5, y)
- Vertex X: (-6,2) → (-6 - 5, 2) = (-11,2)
- Vertex Y: (-4, 7) → (-4 - 5, 7) = (-9,7)
- Vertex Z: (-2, 2) → (-2 -5, 2) = (-7, 2)
- <u>Translation 1 unit down</u>: (x,y) → (x, y-1)
- (-11,2) → (-11, 2 - 1) = (-11, 1)
- (-9,7) → (-9, 7 - 1) = (-9, 6)
- (-7, 2) → (-7, 2 - 1) = (-7, 1)
- <u>Reflextion accross the x-axis</u>: (x,y) → (x, -y)
- (-11, 1) → (-11, -1), which are the coordinates of vertex X"
- (-9, 6) → (-9, -6), which are the coordinates of vertex Y""
- (-7, 1) → (-7, -1), which are the coordinates of vertex Z"
Thus, in conclusion, it is proved that the sequence of transformations that maps triangle XYZ onto triangle X"Y"Z" is translation 5 units to the left, followed by translation 1 unit down, and relfection accross the x-axis.
Answer:
Measurement is a comparison of an unknown quantity with a known fixed quantity of the same kind.
Step-by-step explanation:
Answer:
<h3>2x+2y = 100</h3>
Step-by-step explanation:
Total number of points in the test = 100points
If the test has x questions worth 2 points apiece, then the total number of points for x questions with 2 points each will be 2 * x i.e 2x........ 1
Also, if y questions worth 4 points apiece then the total number of points for y questions with 4 points each will be 4 * x i.e 4x ....... 2
Total points = eqn 1 + eqn 2
100 = 2x+ 2y
Rearrange
2x+2y = 100
Hence an equation in Standard Form that would model this situation is 2x+2y = 100
If cos(70) = 0.342
the cosine of the alternative angle of 70° will also give the same value
angle measure = 360 - 70 = 240°
cos (240) will also be 0.342