Let
<span>A (3, 1)
B (0, 4)
C(3, 7)
D (6, 4)
step 1
find the distance AB
d=</span>√[(y2-y1)²+(x2-x1)²]------> dAB=√[(4-1)²+(0-3)²]-----> dAB=√18 cm
step 2
find the distance CD
d=√[(y2-y1)²+(x2-x1)²]------> dCD=√[(4-7)²+(6-3)²]-----> dCD=√18 cm
step 3
find the distance AD
d=√[(y2-y1)²+(x2-x1)²]------> dAD=√[(4-1)²+(6-3)²]-----> dAD=√18 cm
step 4
find the distance BC
d=√[(y2-y1)²+(x2-x1)²]------> dBC=√[(7-4)²+(3-0)²]-----> dBC=√18 cm
step 5
find slope AB and CD
m=(y2-y1)/(x2-x1)
mAB=-1
mCD=-1
AB and CD are parallel and AB=CD
step 6
find slope AD and BC
m=(y2-y1)/(x2-x1)
mAD=1
mBC=1
AD and BC are parallel and AD=BC
and
AB and AD are perpendicular
BC and CD are perpendicular
therefore
the shape is a square wit length side √18 cm
area of a square=b²
b is the length side of a square
area of a square=(√18)²------> 18 cm²
the answer is18 cm²see the attached figure
72 because right number on the top of the bar is six, and 12•6=72
Well you could multiply 432 by 0.75, or you can divide it by 4 and then multiply it by 3. Either way your answer is 324.
Answer: A
Step-by-step explanation:
Let us first observe behavior in only quadrant 1 .
On x-axis one small box represent one year.
On y-axis one small box represent one dollar.
If we see the 1 year on x-axis its corresponding value of dollar on y -axis is in mid of 4 dollars and 5 dollars.
Now if we see the 2nd year on x-axis its corresponding value of dollar on y-axis is at 6 dollars .
It concluded that after each year 0.5 dollars per pound increases.
We can see the same behavior throughout the straight line.