Answer:
Yes it will move and a= 4.19m/s^2
Explanation:
In order for the box to move it needs to overcome the maximum static friction force
Max Static Friction = μFn(normal force)
plug in givens
Max Static friction = 31.9226
Since 36.6>31.9226, the box will move
Mass= Wieght/g which is 45.8/9.8= 4.67kg
Fnet = Fapp-Fk
= 36.6-16.9918
=19.6082
=ma
Solve for a=4.19m/s^2
Answer:
There are four basic states of matter
Answer:
a) α = 0.338 rad / s² b) θ = 21.9 rev
Explanation:
a) To solve this exercise we will use Newton's second law for rotational movement, that is, torque
τ = I α
fr r = I α
Now we write the translational Newton equation in the radial direction
N- F = 0
N = F
The friction force equation is
fr = μ N
fr = μ F
The moment of inertia of a saying is
I = ½ m r²
Let's replace in the torque equation
(μ F) r = (½ m r²) α
α = 2 μ F / (m r)
α = 2 0.2 24 / (86 0.33)
α = 0.338 rad / s²
b) let's use the relationship of rotational kinematics
w² = w₀² - 2 α θ
0 = w₀² - 2 α θ
θ = w₀² / 2 α
Let's reduce the angular velocity
w₀ = 92 rpm (2π rad / 1 rev) (1 min / 60s) = 9.634 rad / s
θ = 9.634 2 / (2 0.338)
θ = 137.3 rad
Let's reduce radians to revolutions
θ = 137.3 rad (1 rev / 2π rad)
θ = 21.9 rev
Corrosive. It’s something that tends to cause corrosion, and it means to destroy or damage things slowly by chemical action.
Answer:
It needs attractive force from the strong nuclear interaction to counter the electrostatic repulsion between the protons.
Explanation:
It has to counter