The block moves with constant velocity: for Newton's second law, this means that the resultant of the forces acting on the block is zero, because the acceleration is zero.
We are only concerned about the horizontal direction, and there are only two forces acting along this direction: the force F pushing the block and the frictional force
acting against the motion. Since their resultant must be zero, we have:
The frictional force is
where
is the coefficient of kinetic friction
is the weight of the block.
Substituting these values, we find the magnitude of the force F:
Answer:
B. NET force: 2 resultant motion: left
ItsOniiSama avatar
C. Net force: 3 Resultant motion: Left
ItsOniiSama avatar
D. Net Force: 7 Resultant motion: right
ItsOniiSama avatar
E. Net Force:0 resultant motion: NO MOTION
ItsOniiSama avatar
F. NET Force: 3 resultant motion: Down
ItsOniiSama avatar
G. NET FORCE: 10 resultant motion: up
ItsOniiSama avatar
H. Net force: 3 Resultant motion: left
ItsOniiSama avatar
I. Net force: 50 Resultant motion: right
ItsOniiSama avatar
J. NET FORCE: 75 Resultant motion: down
ItsOniiSama avatar
K. Net force :200 Resultant motion: Right
ItsOniiSama avatar
L. Net force: 0 resultant motion:No motion
Explanation:
Answer:
Q = 5 L/s
Explanation:
To find the flow you use the following formula (para calcular el caudal usted utiliza la siguiente formula):
V: Volume (volumen) = 200L
t: time (tiempo) = 40 s
you replace the values of the parameters to calculate Q (usted reemplaza los valores de los parámteros V y t para calcular el caudal):
Hence, the flow is 5 L/s (por lo tanto, el caudal es de 5L/s)
Exercise is the answer hope i helped you
Answer:
A lone neutron spontaneously decays into a proton plus an electron.
Explanation:
In an atom, nuclei contain protons and neutrons, which are the fundamental particles of an atom. Neutrons are stable and uncharged particles inside a nucleus.
For 15 times during its lifetime, a free neutron decays and breaks down into more smaller particles.This breakdown causes problems in nuclear reactors, as they start decaying and emit radiations of different wavelengths.
A neutron undergoes the decaying process to produce an electron, a proton, and energy.
The reaction of neutron decay:
n0 → p+ + e− + νe