Here's the part you need to know:
(Weight of anything) =
(the thing's mass)
times
(acceleration of gravity in the place where the thing is) .
Weight = (mass ) x (gravity) .
That's always true everywhere.
You should memorize it.
For the astronaut on Saturn . . .
Weight = (mass ) x (gravity) .
Weight = (68 kg) x (10.44 m/s²)
= 709.92 newtons .
__________________________________
On Earth, gravity is only 9.8 m/s².
So as long as the astronaut is on Earth, his weight is only
(68 kg) x (9.8 m/s²)
= 666.4 newtons .
Notice that his mass is his mass ... it doesn't change
no matter where he goes.
But his weight changes in different places, because
it depends on the gravity in each place.
Answer:
The frequency of the piano string is <em>1059 Hz</em>.
Explanation:
The frequency beat (fb), 2 beats/second, is the absolute difference between the frequency of the tuning fork (1056 Hz) and the frequency of the piano string.
As the piano string gets tightened, the frequency beat becomes 3 beats/second.
Therefore,
fb = 
Answer:
The input force that you use on an inclined plane is the force with which you push or pull an object. The output force is the force that you would need to lift the object without the inclined plane. This force is equal to the weight of the object.
Explanation:
Answer:
Beacause he has more grocceries and food heavy
Explanation:
Answer:
0.37 m/s to the left
Explanation:
Momentum is conserved. Initial momentum = final momentum.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
Initially, both the fisherman/boat and the package are at rest.
0 = m₁ v₁ + m₂ v₂
Plugging in values and solving:
0 = (82 kg + 112 kg) v + (15 kg) (4.8 m/s)
v = -0.37 m/s
The boat's velocity is 0.37 m/s to the left.