<span>There are Billions and billions of galaxies in the universe containing Trillions and trillions of stars in each galaxy.</span>
The answer is D
Explanation:
the answer would be the last one because kinetic energy is something in motion.
hope it helps.
The kinetic energy of the child at the bottom of the incline is 106.62 J.
The given parameters:
- <em>Mass of the child, m = 16 kg</em>
- <em>Length of the incline, L = 2 m</em>
- <em>Angle of inclination, θ = 20⁰</em>
The vertical height of fall of the child from the top of the incline is calculated as;

The gravitational potential energy of the child at the top of the incline is calculated as;

Thus, based on the principle of conservation of mechanical energy, the kinetic energy of the child at the bottom of the incline is 106.62 J since no energy is lost to friction.
Learn more about conservation of mechanical energy here: brainly.com/question/332163
Answer:

Explanation:
The gravitational force between the proton and the electron is given by

where
G is the gravitational constant
is the proton mass
is the electron mass
r = 3 m is the distance between the proton and the electron
Substituting numbers into the equation,

The electrical force between the proton and the electron is given by

where
k is the Coulomb constant
is the elementary charge (charge of the proton and of the electron)
r = 3 m is the distance between the proton and the electron
Substituting numbers into the equation,

So, the ratio of the electrical force to the gravitational force is

So, we see that the electrical force is much larger than the gravitational force.