1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa05 [86]
1 year ago
15

A yoyo with a mass of m = 150 g is released from rest as shown in the figure.

Physics
1 answer:
avanturin [10]1 year ago
3 0

(1) The linear acceleration of the yoyo is 3.21 m/s².

(2) The angular acceleration of the yoyo is 80.25 rad/s²

(3) The  weight of the yoyo is 1.47 N

(4) The tension in the rope is 1.47 N.

(5) The angular speed of the yoyo is 71.385 rad/s.

<h3> Linear acceleration of the yoyo</h3>

The linear acceleration of the yoyo is calculated by applying the principle of conservation of angular momentum.

∑τ = Iα

rT - Rf = Iα

where;

  • I is moment of inertia
  • α is angular acceleration
  • T is tension in the rope
  • r is inner radius
  • R is outer radius
  • f is frictional force

rT - Rf = Iα  ----- (1)

T - f = Ma  -------- (2)

a = Rα

where;

  • a is the linear acceleration of the yoyo

Torque equation for frictional force;

f = (\frac{r}{R} T) - (\frac{I}{R^2} )a

solve (1) and (2)

a = \frac{TR(R - r)}{I + MR^2}

since the yoyo is pulled in vertical direction, T = mg a = \frac{mgR(R - r)}{I + MR^2} \\\\a = \frac{(0.15\times 9.8 \times 0.04)(0.04 - 0.0214)}{1.01 \times 10^{-4} \ + \ (0.15 \times 0.04^2)} \\\\a = 3.21 \ m/s^2

<h3>Angular acceleration of the yoyo</h3>

α = a/R

α = 3.21/0.04

α = 80.25 rad/s²

<h3>Weight of the yoyo</h3>

W = mg

W = 0.15 x 9.8 = 1.47 N

<h3>Tension in the rope </h3>

T = mg = 1.47 N

<h3>Angular speed of the yoyo </h3>

v² = u² + 2as

v² = 0 + 2(3.21)(1.27)

v² = 8.1534

v = √8.1534

v = 2.855 m/s

ω = v/R

ω = 2.855/0.04

ω = 71.385 rad/s

Learn more about angular speed here: brainly.com/question/6860269

#SPJ1

You might be interested in
Match the term with the appropriate image
Tamiku [17]

First figure shows the object position

Second shows the image position

Third shows the focal length.

8 0
3 years ago
The early workers in spectroscopy (Fraunhofer with the solar spectrum, Bunsen and Kirchhoff with laboratory spectra) discovered
Anestetic [448]

The hot gases produce their own characteristic pattern of spectral lines, which remain fixed as the temperature increases moderately.

<h3><u>Explanation: </u></h3>

A continuous light spectrum emitted by excited atoms of a hot gas with dark spaces in between due to scattered light of specific wavelengths is termed as an atomic spectrum. A hot gas has excited electrons and produces an emission spectrum; the scattered light forming dark bands are called spectral lines.

Fraunhofer closely observed sunlight by expanding the spectrum and a huge number of dark spectral lines were seen.  "Robert Bunsen and Gustav Kirchhoff" discovered that when certain chemicals were burnt using a Bunsen burner, atomic spectra with spectral lines were seen. Atomic spectral pattern is thus a unique characteristic of any gas and can be used to independently identify presence of elements.

The spectrum change does not depend greatly on increasing temperatures and hence no significant change is observed in the emitted spectrum with moderate increase in temperature.

8 0
3 years ago
One of the most efficient heat engines ever built is a coal-fired steam turbine in the Ohio River valley, operating between 1 87
k0ka [10]

Answer:The answer

Explanation:

5 0
3 years ago
*please refer to photo* An electric field of magnitude 5.25 ✕ 10^5N/C points due south at a certain location. Find the magnitude
kvv77 [185]

Answer:

Approximately 3.86\; {\rm N} (given that the magnitude of this charge is -7.35\; {\rm \mu C}.)

Explanation:

If a charge of magnitude q is placed in an electric field of magnitude E, the magnitude of the electrostatic force on that charge would be F = E\, q.

The magnitude of this charge is q = 7.35\; {\rm \mu C}. Apply the unit conversion 1\; {\rm \mu C} = 10^{-6}\; {\rm C}:

\begin{aligned} q &= 7.35\; {\mu C} \times \frac{10^{-6}\; {\rm C}}{1\; {\mu C}} = 7.35\times 10^{-6}\; {\rm C}\end{aligned}.

An electric field of magnitude E = 5.25\times 10^{5}\; {\rm N \cdot C^{-1}} would exert on this charge a force with a magnitude of:

\begin{aligned}F &= E\, q \\ &= 5.25 \times 10^{5}\; {\rm N \cdot C^{-1}} \times (-7.35\times 10^{-6}\; {\rm C}) \\ &\approx 3.86\; {\rm N}\end{aligned}.

Note that the electric charge in this question is negative. Hence, electrostatic force on this charge would be opposite in direction to the the electric field. Since the electric field points due south, the electrostatic force on this charge would point due north.

4 0
2 years ago
A cyclist going downhill is accelerating at 1. 2 m/s2. If the final velocity of the cyclist is 16 m/s after 10 seconds, what is
mel-nik [20]

Answer:

\boxed {\boxed {\sf v_i= 4 \ m/s}}

Explanation:

We are asked to find the cyclist's initial velocity. We are given the acceleration, final velocity, and time, so we will use the following kinematic equation.

v_f= v_i + at

The cyclist is acceleration at 1.2 meters per second squared. After 10 seconds, the velocity is 16 meters per second.

  • v_f= 16 m/s
  • a= 1.2 m/s²
  • t= 10 s

Substitute the values into the formula.

16 \ m/s = v_i + (1.2 \ m/s^2)(10 \ s)

Multiply.

16 \ m/s = v_i + (1.2 \ m/s^2 * 10 \ s)

16 \ m/s = v_i + 12 \ m/s

We are solving for the initial velocity, so we must isolate the variable v_i. Subtract 12 meters per second from both sides of the equation.

16 \ m/s - 12 \ m/s = v_i + 12 \ m/s -12 \ m/s

4 \ m/s = v_i

The cyclist's initial velocity is <u>4 meters per second.</u>

6 0
2 years ago
Other questions:
  • Please Please Please Can Help Me On This Question!!!!! I Give Thanks!!!!
    5·1 answer
  • When a water wave runs into you at the beach, what causes you to get knocked down?
    9·1 answer
  • Select the correct answer.
    12·2 answers
  • A function is defined by f(x)= 6x+1.5. What is f(2.5)?
    9·1 answer
  • Which statement is true about the circuit diagram below?
    5·1 answer
  • LPG is a better domestic fuel than wood?​
    13·1 answer
  • A train sounds its whistle at a constant frequency as it passes by the platform. Compared to the sound emitted by the whistle, t
    12·1 answer
  • What is force? And tell it's unit
    9·2 answers
  • C1=4F, C2=4F, C3=2F, C4=4F, C5= 9.2 F. Calculate the equivalent capacitance
    10·1 answer
  • Two students are talking in the corridor you can hear them in your class but you cannot see them why?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!